SlideShare a Scribd company logo
Business statistics (Introduction)
CHAPTER 1
EXPLORING DATA
 Introduction: Data Analysis: Making Sense of Data
 1.1 Analyzing Categorical Data
 1.2 Displaying Quantitative Data with Graphs
 1.3 Describing Quantitative Data with Numbers
INTRODUCTION
DATA ANALYSIS: MAKING SENSE OF
DATA
Learning Objectives
After this section, you should be able to…
DEFINE “Individuals” and “Variables”
DISTINGUISH between “Categorical” and “Quantitative”
variables
DEFINE “Distribution”
DESCRIBE the idea behind “Inference”
DATAANALYSIS
Statistics is the science of data.
 Data Analysis is the process of organizing,
displaying, summarizing, and asking questions
about data.
Definitions:
Individuals – objects (people, animals, things)
described by a set of data
Variable - any characteristic of an individual
Categorical Variable
– places an individual into
one of several groups or
categories.
Quantitative Variable
– takes numerical values for
which it makes sense to find
an average.
DATAANALYSIS
 A variable generally takes on many different
values. In data analysis, we are interested in
how often a variable takes on each value.
Definition:
Distribution – tells us what values a variable
takes and how often it takes those values
2009 Fuel EconomyGuide
MODEL MPG
1
2
3
4
5
6
7
8
9
Acura RL 22
Audi A6 Quattro 23
BentleyArnage 14
BMW5281 28
Buick Lacrosse 28
Cadillac CTS 25
Chevrolet Malibu 33
Chrysler Sebring 30
Dodge Avenger 30
2009 Fuel EconomyGuide
MODEL MPG <new>
9
10
11
12
13
14
15
16
17
Dodge Avenger 30
Hyundai Elantra 33
Jaguar XF 25
Kia Optima 32
Lexus GS 350 26
Lincolon MKZ 28
Mazda 6 29
Mercedes-BenzE350 24
MercuryMilan 29
2009 Fuel EconomyGuide
MODEL MPG <new>
16
17
18
19
20
21
22
23
24
Mercedes-BenzE350 24
MercuryMilan 29
Mitsubishi Galant 27
Nissan Maxima 26
Rolls Royce Phantom 18
Saturn Aura 33
Toyota Camry 31
Volkswagen Passat 29
Volvo S80 25
Variable of Interest:
MPG
Dotplot of MPG
Distribution
Example
2009 Fuel EconomyGuide
MODEL MPG <new>
9
10
11
12
13
14
15
16
17
Dodge Avenger 30
Hyundai Elantra 33
Jaguar XF 25
Kia Optima 32
Lexus GS 350 26
Lincolon MKZ 28
Mazda 6 29
Mercedes-BenzE350 24
MercuryMilan 29
2009 Fuel EconomyGuide
MODEL MPG <new>
16
17
18
19
20
21
22
23
24
Mercedes-BenzE350 24
MercuryMilan 29
Mitsubishi Galant 27
Nissan Maxima 26
Rolls Royce Phantom 18
Saturn Aura 33
Toyota Camry 31
Volkswagen Passat 29
Volvo S80 25
2009 Fuel EconomyGuide
MODEL MPG
1
2
3
4
5
6
7
8
9
Acura RL 22
Audi A6 Quattro 23
BentleyArnage 14
BMW5281 28
Buick Lacrosse 28
Cadillac CTS 25
Chevrolet Malibu 33
Chrysler Sebring 30
Dodge Avenger 30
Add numerical
summaries
DATAANALYSIS
Examine each variable
by itself.
Then study
relationships among
the variables.
Start with a graph or
graphs
How to Explore Data
DATAANALYSIS
From Data Analysis to Inference
Population
Sample
Collect data from a
representative Sample...
Perform Data
Analysis, keeping
probability in mind…
Make an Inference
about the Population.
ACTIVITY: HIRING
DISCRIMINATION Follow the directions on Page 5
 Perform 5 repetitions of your simulation.
 Turn in your results to your teacher.
 Teacher: Right-click (control-click) on the graph to edit the counts.
DataAnalysis
INTRODUCTION
DATA ANALYSIS: MAKING SENSE OF
DATA
Summary
In this section, we learned that…
A dataset contains information on individuals.
For each individual, data give values for one or more variables.
Variables can be categorical or quantitative.
The distribution of a variable describes what values it takes and
how often it takes them.
Inference is the process of making a conclusion about a
population based on a sample set of data.
LOOKING AHEAD…
We’ll learn how to analyze categorical data.
Bar Graphs
Pie Charts
Two-Way Tables
Conditional Distributions
We’ll also learn how to organize a statistical problem.
In the next Section…
Ad

More Related Content

What's hot (18)

Bcs 040 Descriptive Statistics
Bcs 040 Descriptive StatisticsBcs 040 Descriptive Statistics
Bcs 040 Descriptive Statistics
Narayan Thapa
 
Descriptive statistics
Descriptive statisticsDescriptive statistics
Descriptive statistics
University of Jaffna
 
Descriptive statistics -review(2)
Descriptive statistics -review(2)Descriptive statistics -review(2)
Descriptive statistics -review(2)
Hanimarcelo slideshare
 
Tools and Techniques - Statistics: descriptive statistics
Tools and Techniques - Statistics: descriptive statistics Tools and Techniques - Statistics: descriptive statistics
Tools and Techniques - Statistics: descriptive statistics
https://aiimsbhubaneswar.nic.in/
 
Emba502 day 2
Emba502 day 2Emba502 day 2
Emba502 day 2
Nahid Amin
 
Statr sessions 4 to 6
Statr sessions 4 to 6Statr sessions 4 to 6
Statr sessions 4 to 6
Ruru Chowdhury
 
Statistics for Librarians, Session 2: Descriptive statistics
Statistics for Librarians, Session 2: Descriptive statisticsStatistics for Librarians, Session 2: Descriptive statistics
Statistics for Librarians, Session 2: Descriptive statistics
University of North Texas
 
Introduction to statistics...ppt rahul
Introduction to statistics...ppt rahulIntroduction to statistics...ppt rahul
Introduction to statistics...ppt rahul
Rahul Dhaker
 
Introduction to Descriptive Statistics
Introduction to Descriptive StatisticsIntroduction to Descriptive Statistics
Introduction to Descriptive Statistics
Sanju Rusara Seneviratne
 
Basics of Educational Statistics (Variables and types)
Basics of Educational Statistics (Variables and types)Basics of Educational Statistics (Variables and types)
Basics of Educational Statistics (Variables and types)
HennaAnsari
 
Descriptive Statistics and Data Visualization
Descriptive Statistics and Data VisualizationDescriptive Statistics and Data Visualization
Descriptive Statistics and Data Visualization
Douglas Joubert
 
Panel slides
Panel slidesPanel slides
Panel slides
Titus Mutambu Mweta
 
Descriptive Statistics
Descriptive StatisticsDescriptive Statistics
Descriptive Statistics
Neny Isharyanti
 
Day 3 descriptive statistics
Day 3  descriptive statisticsDay 3  descriptive statistics
Day 3 descriptive statistics
Elih Sutisna Yanto
 
General Statistics boa
General Statistics boaGeneral Statistics boa
General Statistics boa
raileeanne
 
Graphs bar line & picto
Graphs  bar line & pictoGraphs  bar line & picto
Graphs bar line & picto
Martha Ardila Ibarra
 
Types of graphs
Types of graphsTypes of graphs
Types of graphs
abigail Dayrit
 
Data presentation
Data presentationData presentation
Data presentation
MaiBabes17
 
Bcs 040 Descriptive Statistics
Bcs 040 Descriptive StatisticsBcs 040 Descriptive Statistics
Bcs 040 Descriptive Statistics
Narayan Thapa
 
Tools and Techniques - Statistics: descriptive statistics
Tools and Techniques - Statistics: descriptive statistics Tools and Techniques - Statistics: descriptive statistics
Tools and Techniques - Statistics: descriptive statistics
https://aiimsbhubaneswar.nic.in/
 
Statistics for Librarians, Session 2: Descriptive statistics
Statistics for Librarians, Session 2: Descriptive statisticsStatistics for Librarians, Session 2: Descriptive statistics
Statistics for Librarians, Session 2: Descriptive statistics
University of North Texas
 
Introduction to statistics...ppt rahul
Introduction to statistics...ppt rahulIntroduction to statistics...ppt rahul
Introduction to statistics...ppt rahul
Rahul Dhaker
 
Basics of Educational Statistics (Variables and types)
Basics of Educational Statistics (Variables and types)Basics of Educational Statistics (Variables and types)
Basics of Educational Statistics (Variables and types)
HennaAnsari
 
Descriptive Statistics and Data Visualization
Descriptive Statistics and Data VisualizationDescriptive Statistics and Data Visualization
Descriptive Statistics and Data Visualization
Douglas Joubert
 
General Statistics boa
General Statistics boaGeneral Statistics boa
General Statistics boa
raileeanne
 
Data presentation
Data presentationData presentation
Data presentation
MaiBabes17
 

Similar to Business statistics (Introduction) (20)

AP Stats Chapter 1 Exploring Data [Autosaved] (1).ppt
AP Stats  Chapter 1 Exploring Data [Autosaved] (1).pptAP Stats  Chapter 1 Exploring Data [Autosaved] (1).ppt
AP Stats Chapter 1 Exploring Data [Autosaved] (1).ppt
MutluKader1
 
Time series.ppt
Time series.pptTime series.ppt
Time series.ppt
SauravDash10
 
Introduction to Symbolic data analysis by Edwin diday
Introduction to Symbolic data analysis by Edwin didayIntroduction to Symbolic data analysis by Edwin diday
Introduction to Symbolic data analysis by Edwin diday
shreemsbhuvana
 
Using timeseries extraction the mining.ppt
Using timeseries extraction the mining.pptUsing timeseries extraction the mining.ppt
Using timeseries extraction the mining.ppt
johnsaida3101
 
Predictive Modelling
Predictive ModellingPredictive Modelling
Predictive Modelling
Rajiv Advani
 
Corso di Statistica Inferenziale per Data Scientist
Corso di Statistica Inferenziale per Data ScientistCorso di Statistica Inferenziale per Data Scientist
Corso di Statistica Inferenziale per Data Scientist
Giuseppe54
 
Descriptive Analytics: Data Reduction
 Descriptive Analytics: Data Reduction Descriptive Analytics: Data Reduction
Descriptive Analytics: Data Reduction
Nguyen Ngoc Binh Phuong
 
UNIT IV.pptx
UNIT IV.pptxUNIT IV.pptx
UNIT IV.pptx
senthil kumar
 
Cs501 cluster analysis
Cs501 cluster analysisCs501 cluster analysis
Cs501 cluster analysis
Kamal Singh Lodhi
 
AP Stat Lesson 11 - Describing Data - dot plots, stem plots, histograms2.ppt
AP Stat Lesson 11 - Describing Data - dot plots, stem plots, histograms2.pptAP Stat Lesson 11 - Describing Data - dot plots, stem plots, histograms2.ppt
AP Stat Lesson 11 - Describing Data - dot plots, stem plots, histograms2.ppt
NourhanMahmoud69
 
Multidimension Scaling and Isomap
Multidimension Scaling and IsomapMultidimension Scaling and Isomap
Multidimension Scaling and Isomap
Cheng-Shiang Li
 
multivariate data Analysis and Principal Component Analysis.pptx
multivariate data Analysis and Principal Component Analysis.pptxmultivariate data Analysis and Principal Component Analysis.pptx
multivariate data Analysis and Principal Component Analysis.pptx
apsapssingh9
 
SIT095_Lecture_9_Logistic_Regression_Part_3.pptx
SIT095_Lecture_9_Logistic_Regression_Part_3.pptxSIT095_Lecture_9_Logistic_Regression_Part_3.pptx
SIT095_Lecture_9_Logistic_Regression_Part_3.pptx
dawitg2
 
23 Machine Learning Feature Generation
23 Machine Learning Feature Generation23 Machine Learning Feature Generation
23 Machine Learning Feature Generation
Andres Mendez-Vazquez
 
Data science lab project
Data science lab projectData science lab project
Data science lab project
LuciaRavazzi
 
Eco550 Assignment 1
Eco550 Assignment 1Eco550 Assignment 1
Eco550 Assignment 1
Lisa Kennedy
 
Texto estudiante etad01
Texto estudiante etad01Texto estudiante etad01
Texto estudiante etad01
leoscarmillan
 
QQ Plot.pptx
QQ Plot.pptxQQ Plot.pptx
QQ Plot.pptx
Rahul Borate
 
Engineering Statistics
Engineering Statistics Engineering Statistics
Engineering Statistics
Bahzad5
 
4. six sigma descriptive statistics
4. six sigma descriptive statistics4. six sigma descriptive statistics
4. six sigma descriptive statistics
Hakeem-Ur- Rehman
 
AP Stats Chapter 1 Exploring Data [Autosaved] (1).ppt
AP Stats  Chapter 1 Exploring Data [Autosaved] (1).pptAP Stats  Chapter 1 Exploring Data [Autosaved] (1).ppt
AP Stats Chapter 1 Exploring Data [Autosaved] (1).ppt
MutluKader1
 
Introduction to Symbolic data analysis by Edwin diday
Introduction to Symbolic data analysis by Edwin didayIntroduction to Symbolic data analysis by Edwin diday
Introduction to Symbolic data analysis by Edwin diday
shreemsbhuvana
 
Using timeseries extraction the mining.ppt
Using timeseries extraction the mining.pptUsing timeseries extraction the mining.ppt
Using timeseries extraction the mining.ppt
johnsaida3101
 
Predictive Modelling
Predictive ModellingPredictive Modelling
Predictive Modelling
Rajiv Advani
 
Corso di Statistica Inferenziale per Data Scientist
Corso di Statistica Inferenziale per Data ScientistCorso di Statistica Inferenziale per Data Scientist
Corso di Statistica Inferenziale per Data Scientist
Giuseppe54
 
AP Stat Lesson 11 - Describing Data - dot plots, stem plots, histograms2.ppt
AP Stat Lesson 11 - Describing Data - dot plots, stem plots, histograms2.pptAP Stat Lesson 11 - Describing Data - dot plots, stem plots, histograms2.ppt
AP Stat Lesson 11 - Describing Data - dot plots, stem plots, histograms2.ppt
NourhanMahmoud69
 
Multidimension Scaling and Isomap
Multidimension Scaling and IsomapMultidimension Scaling and Isomap
Multidimension Scaling and Isomap
Cheng-Shiang Li
 
multivariate data Analysis and Principal Component Analysis.pptx
multivariate data Analysis and Principal Component Analysis.pptxmultivariate data Analysis and Principal Component Analysis.pptx
multivariate data Analysis and Principal Component Analysis.pptx
apsapssingh9
 
SIT095_Lecture_9_Logistic_Regression_Part_3.pptx
SIT095_Lecture_9_Logistic_Regression_Part_3.pptxSIT095_Lecture_9_Logistic_Regression_Part_3.pptx
SIT095_Lecture_9_Logistic_Regression_Part_3.pptx
dawitg2
 
23 Machine Learning Feature Generation
23 Machine Learning Feature Generation23 Machine Learning Feature Generation
23 Machine Learning Feature Generation
Andres Mendez-Vazquez
 
Data science lab project
Data science lab projectData science lab project
Data science lab project
LuciaRavazzi
 
Eco550 Assignment 1
Eco550 Assignment 1Eco550 Assignment 1
Eco550 Assignment 1
Lisa Kennedy
 
Texto estudiante etad01
Texto estudiante etad01Texto estudiante etad01
Texto estudiante etad01
leoscarmillan
 
Engineering Statistics
Engineering Statistics Engineering Statistics
Engineering Statistics
Bahzad5
 
4. six sigma descriptive statistics
4. six sigma descriptive statistics4. six sigma descriptive statistics
4. six sigma descriptive statistics
Hakeem-Ur- Rehman
 
Ad

Recently uploaded (20)

L1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptxL1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptx
38NoopurPatel
 
2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf
2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf
2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf
OlhaTatokhina1
 
Microsoft Excel: A Comprehensive Overview
Microsoft Excel: A Comprehensive OverviewMicrosoft Excel: A Comprehensive Overview
Microsoft Excel: A Comprehensive Overview
GinaTomarongRegencia
 
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
Taqyea
 
Process Mining at Rabobank - Organizational challenges
Process Mining at Rabobank - Organizational challengesProcess Mining at Rabobank - Organizational challenges
Process Mining at Rabobank - Organizational challenges
Process mining Evangelist
 
hersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distributionhersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distribution
hershtara1
 
Modern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx AaModern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx Aa
MuhammadAwaisKamboh
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
problem solving.presentation slideshow bsc nursing
problem solving.presentation slideshow bsc nursingproblem solving.presentation slideshow bsc nursing
problem solving.presentation slideshow bsc nursing
vishnudathas123
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Process Mining and Official Statistics - CBS
Process Mining and Official Statistics - CBSProcess Mining and Official Statistics - CBS
Process Mining and Official Statistics - CBS
Process mining Evangelist
 
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
Taqyea
 
Decision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdfDecision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdf
Saikat Basu
 
Customer Segmentation using K-Means clustering
Customer Segmentation using K-Means clusteringCustomer Segmentation using K-Means clustering
Customer Segmentation using K-Means clustering
Ingrid Nyakerario
 
AWS Certified Machine Learning Slides.pdf
AWS Certified Machine Learning Slides.pdfAWS Certified Machine Learning Slides.pdf
AWS Certified Machine Learning Slides.pdf
philsparkshome
 
Adopting Process Mining at the Rabobank - use case
Adopting Process Mining at the Rabobank - use caseAdopting Process Mining at the Rabobank - use case
Adopting Process Mining at the Rabobank - use case
Process mining Evangelist
 
50_questions_full.pptxdddddddddddddddddd
50_questions_full.pptxdddddddddddddddddd50_questions_full.pptxdddddddddddddddddd
50_questions_full.pptxdddddddddddddddddd
emir73065
 
Process Mining at Dimension Data - Jan vermeulen
Process Mining at Dimension Data - Jan vermeulenProcess Mining at Dimension Data - Jan vermeulen
Process Mining at Dimension Data - Jan vermeulen
Process mining Evangelist
 
How to regulate and control your it-outsourcing provider with process mining
How to regulate and control your it-outsourcing provider with process miningHow to regulate and control your it-outsourcing provider with process mining
How to regulate and control your it-outsourcing provider with process mining
Process mining Evangelist
 
L1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptxL1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptx
38NoopurPatel
 
2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf
2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf
2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf
OlhaTatokhina1
 
Microsoft Excel: A Comprehensive Overview
Microsoft Excel: A Comprehensive OverviewMicrosoft Excel: A Comprehensive Overview
Microsoft Excel: A Comprehensive Overview
GinaTomarongRegencia
 
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
Taqyea
 
Process Mining at Rabobank - Organizational challenges
Process Mining at Rabobank - Organizational challengesProcess Mining at Rabobank - Organizational challenges
Process Mining at Rabobank - Organizational challenges
Process mining Evangelist
 
hersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distributionhersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distribution
hershtara1
 
Modern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx AaModern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx Aa
MuhammadAwaisKamboh
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
problem solving.presentation slideshow bsc nursing
problem solving.presentation slideshow bsc nursingproblem solving.presentation slideshow bsc nursing
problem solving.presentation slideshow bsc nursing
vishnudathas123
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Process Mining and Official Statistics - CBS
Process Mining and Official Statistics - CBSProcess Mining and Official Statistics - CBS
Process Mining and Official Statistics - CBS
Process mining Evangelist
 
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
Taqyea
 
Decision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdfDecision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdf
Saikat Basu
 
Customer Segmentation using K-Means clustering
Customer Segmentation using K-Means clusteringCustomer Segmentation using K-Means clustering
Customer Segmentation using K-Means clustering
Ingrid Nyakerario
 
AWS Certified Machine Learning Slides.pdf
AWS Certified Machine Learning Slides.pdfAWS Certified Machine Learning Slides.pdf
AWS Certified Machine Learning Slides.pdf
philsparkshome
 
Adopting Process Mining at the Rabobank - use case
Adopting Process Mining at the Rabobank - use caseAdopting Process Mining at the Rabobank - use case
Adopting Process Mining at the Rabobank - use case
Process mining Evangelist
 
50_questions_full.pptxdddddddddddddddddd
50_questions_full.pptxdddddddddddddddddd50_questions_full.pptxdddddddddddddddddd
50_questions_full.pptxdddddddddddddddddd
emir73065
 
Process Mining at Dimension Data - Jan vermeulen
Process Mining at Dimension Data - Jan vermeulenProcess Mining at Dimension Data - Jan vermeulen
Process Mining at Dimension Data - Jan vermeulen
Process mining Evangelist
 
How to regulate and control your it-outsourcing provider with process mining
How to regulate and control your it-outsourcing provider with process miningHow to regulate and control your it-outsourcing provider with process mining
How to regulate and control your it-outsourcing provider with process mining
Process mining Evangelist
 
Ad

Business statistics (Introduction)

  • 2. CHAPTER 1 EXPLORING DATA  Introduction: Data Analysis: Making Sense of Data  1.1 Analyzing Categorical Data  1.2 Displaying Quantitative Data with Graphs  1.3 Describing Quantitative Data with Numbers
  • 3. INTRODUCTION DATA ANALYSIS: MAKING SENSE OF DATA Learning Objectives After this section, you should be able to… DEFINE “Individuals” and “Variables” DISTINGUISH between “Categorical” and “Quantitative” variables DEFINE “Distribution” DESCRIBE the idea behind “Inference”
  • 4. DATAANALYSIS Statistics is the science of data.  Data Analysis is the process of organizing, displaying, summarizing, and asking questions about data. Definitions: Individuals – objects (people, animals, things) described by a set of data Variable - any characteristic of an individual Categorical Variable – places an individual into one of several groups or categories. Quantitative Variable – takes numerical values for which it makes sense to find an average.
  • 5. DATAANALYSIS  A variable generally takes on many different values. In data analysis, we are interested in how often a variable takes on each value. Definition: Distribution – tells us what values a variable takes and how often it takes those values 2009 Fuel EconomyGuide MODEL MPG 1 2 3 4 5 6 7 8 9 Acura RL 22 Audi A6 Quattro 23 BentleyArnage 14 BMW5281 28 Buick Lacrosse 28 Cadillac CTS 25 Chevrolet Malibu 33 Chrysler Sebring 30 Dodge Avenger 30 2009 Fuel EconomyGuide MODEL MPG <new> 9 10 11 12 13 14 15 16 17 Dodge Avenger 30 Hyundai Elantra 33 Jaguar XF 25 Kia Optima 32 Lexus GS 350 26 Lincolon MKZ 28 Mazda 6 29 Mercedes-BenzE350 24 MercuryMilan 29 2009 Fuel EconomyGuide MODEL MPG <new> 16 17 18 19 20 21 22 23 24 Mercedes-BenzE350 24 MercuryMilan 29 Mitsubishi Galant 27 Nissan Maxima 26 Rolls Royce Phantom 18 Saturn Aura 33 Toyota Camry 31 Volkswagen Passat 29 Volvo S80 25 Variable of Interest: MPG Dotplot of MPG Distribution Example
  • 6. 2009 Fuel EconomyGuide MODEL MPG <new> 9 10 11 12 13 14 15 16 17 Dodge Avenger 30 Hyundai Elantra 33 Jaguar XF 25 Kia Optima 32 Lexus GS 350 26 Lincolon MKZ 28 Mazda 6 29 Mercedes-BenzE350 24 MercuryMilan 29 2009 Fuel EconomyGuide MODEL MPG <new> 16 17 18 19 20 21 22 23 24 Mercedes-BenzE350 24 MercuryMilan 29 Mitsubishi Galant 27 Nissan Maxima 26 Rolls Royce Phantom 18 Saturn Aura 33 Toyota Camry 31 Volkswagen Passat 29 Volvo S80 25 2009 Fuel EconomyGuide MODEL MPG 1 2 3 4 5 6 7 8 9 Acura RL 22 Audi A6 Quattro 23 BentleyArnage 14 BMW5281 28 Buick Lacrosse 28 Cadillac CTS 25 Chevrolet Malibu 33 Chrysler Sebring 30 Dodge Avenger 30 Add numerical summaries DATAANALYSIS Examine each variable by itself. Then study relationships among the variables. Start with a graph or graphs How to Explore Data
  • 7. DATAANALYSIS From Data Analysis to Inference Population Sample Collect data from a representative Sample... Perform Data Analysis, keeping probability in mind… Make an Inference about the Population.
  • 8. ACTIVITY: HIRING DISCRIMINATION Follow the directions on Page 5  Perform 5 repetitions of your simulation.  Turn in your results to your teacher.  Teacher: Right-click (control-click) on the graph to edit the counts. DataAnalysis
  • 9. INTRODUCTION DATA ANALYSIS: MAKING SENSE OF DATA Summary In this section, we learned that… A dataset contains information on individuals. For each individual, data give values for one or more variables. Variables can be categorical or quantitative. The distribution of a variable describes what values it takes and how often it takes them. Inference is the process of making a conclusion about a population based on a sample set of data.
  • 10. LOOKING AHEAD… We’ll learn how to analyze categorical data. Bar Graphs Pie Charts Two-Way Tables Conditional Distributions We’ll also learn how to organize a statistical problem. In the next Section…