This document provides an overview of descriptive statistics and index numbers used in data analysis. It defines descriptive statistics as methods used to describe and summarize patterns in data without making conclusions beyond what is directly observed. Various measures of central tendency like the mean, median, and mode are described as well as measures of dispersion such as range, standard deviation, and variance. Index numbers are constructed to study changes that cannot be measured directly, and weighted indexes like the Laspeyres and Paasche indexes are discussed.
Please acknowledge my work and I hope you like it. This is not boring like other ppts you see, I have tried my best to make it extremely informative with lots of pictures and images, I am sure if you choose this as your presentation for statistics topic in your office or school, you are surely going to appreciated by all including your teachers, friends, your interviewer or your manager.
Statistics for machine learning shifa noorulainShifaNoorUlAin1
Introduction to Statistics
Descriptive Statistics
Inferential Statistics
Categories in Statistics
Descriptive Vs Inferential Statistics
Descritive statistics Topics
-Measures of Central Tendency
-Measures of the Spread
-Measures of Asymmetry(Skewness)
Lecture on Introduction to Descriptive Statistics - Part 1 and Part 2. These slides were presented during a lecture at the Colombo Institute of Research and Psychology.
BRM_Data Analysis, Interpretation and Reporting Part II.pptAbdifatahAhmedHurre
This document provides an overview of data analysis, interpretation, and reporting. It discusses descriptive and inferential analysis, and univariate, bivariate, and multivariate analysis. Specific quantitative analysis techniques covered include measures of central tendency, dispersion, frequency distributions, histograms, and tests of normality. Hypothesis testing procedures like t-tests, ANOVA, and non-parametric alternatives are also summarized. Steps in hypothesis testing include stating the null hypothesis, choosing a statistical test, specifying the significance level, and deciding whether to reject or fail to reject the null hypothesis based on findings.
This document discusses various statistical parameters used in pharmaceutical research and development. It describes parameters like measures of central tendency (mean, median, mode), dispersion (variance, standard deviation), coefficient of dispersion, residuals, factor analysis, absolute error, mean absolute error, and percentage error of estimate. Measures of central tendency provide a summary of the central or typical values in a data set. Dispersion measures provide a way to quantify how spread out the data is from the central value. Other parameters like residuals, errors, and factor analysis are used to analyze relationships in complex data.
This document discusses various measures of central tendency and dispersion that are commonly used in epidemiology to summarize data distributions. It describes the mean, median and mode as measures of central tendency that convey the average or typical value, and how the appropriate measure depends on the data's measurement level, shape and research purpose. Measures of dispersion like range, interquartile range, variance and standard deviation describe how spread out the data is from the central value. The document provides formulas and explanations for calculating and interpreting each measure.
This document discusses statistical procedures and their applications. It defines key statistical terminology like population, sample, parameter, and variable. It describes the two main types of statistics - descriptive and inferential statistics. Descriptive statistics summarize and describe data through measures of central tendency (mean, median, mode), dispersion, frequency, and position. The mean is the average value, the median is the middle value, and the mode is the most frequent value in a data set. Descriptive statistics help understand the characteristics of a sample or small population.
Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample and the measures. Together with simple graphics analysis, they form the basis of virtually every quantitative analysis of data.
This document discusses various statistical measures of dispersion. It defines dispersion as how spread out or varied a set of numerical data is from the average value. There are two types of measures - absolute, which have the same units as the data, and relative, which are unit-less and used to compare datasets. Examples of measures discussed include range, mean deviation, standard deviation, variance, and coefficient of variation. The document also covers frequency distributions, binomial distributions, chi-square tests, and data analysis processes.
Descriptive statistics is used to describe and summarize key characteristics of a data set. Commonly used measures include central tendency, such as the mean, median, and mode, and measures of dispersion like range, interquartile range, standard deviation, and variance. The mean is the average value calculated by summing all values and dividing by the number of values. The median is the middle value when data is arranged in order. The mode is the most frequently occurring value. Measures of dispersion describe how spread out the data is, such as the difference between highest and lowest values (range) or how close values are to the average (standard deviation).
Frequencies provides statistics and graphical displays to describe variables. It can order values by ascending/descending order or frequency. Key outputs include mean, median, mode, quartiles, standard deviation, variance, skewness, and kurtosis. Quartiles divide data into four equal groups. Skewness measures asymmetry while kurtosis measures clustering around the mean. Charts like pie charts, bar charts, and histograms can visualize the data distribution. Crosstabs forms two-way and multi-way tables to analyze relationships between variables.
Statistics is the methodology used to interpret and draw conclusions from collected data. It provides methods for designing research studies, summarizing and exploring data, and making predictions about phenomena represented by the data. A population is the set of all individuals of interest, while a sample is a subset of individuals from the population used for measurements. Parameters describe characteristics of the entire population, while statistics describe characteristics of a sample and can be used to infer parameters. Basic descriptive statistics used to summarize samples include the mean, standard deviation, and variance, which measure central tendency, spread, and how far data points are from the mean, respectively. The goal of statistical data analysis is to gain understanding from data through defined steps.
Statistics is the collection, organization, analysis, and presentation of data. It has become important for professionals, scientists, and citizens to make sense of large amounts of data. Statistics are used across many disciplines from science to business. There are two main types of statistical methods - descriptive statistics which summarize data through measures like the mean and median, and inferential statistics which make inferences about populations based on samples. Descriptive statistics describe data through measures of central tendency and variability, while inferential statistics allow inferences to be made from samples to populations through techniques like hypothesis testing.
Descriptive statistics are used to describe and summarize the basic features of data through measures of central tendency like the mean, median, and mode, and measures of variability like range, variance and standard deviation. The mean is the average value and is best for continuous, non-skewed data. The median is less affected by outliers and is best for skewed or ordinal data. The mode is the most frequent value and is used for categorical data. Measures of variability describe how spread out the data is, with higher values indicating more dispersion.
This document outlines the syllabus for a statistics and probabilities course, which covers topics such as descriptive statistics like measures of central tendency and dispersion, probability distributions, hypothesis testing, regression, and experimental design. It provides definitions and examples of key statistical concepts like populations, samples, variables, measures of central tendency including mean, median and mode, and measures of dispersion like range, mean deviation, variance and standard deviation. The course aims to teach students how to make informed judgments and decisions using statistical methods.
After data is collected, it must be processed which includes verifying, organizing, transforming, and extracting the data for analysis. There are several steps to processing data including categorizing it based on the study objectives, coding it numerically or alphabetically, and tabulating and analyzing it using appropriate statistical tools. Statistics help remove researcher bias by interpreting data statistically rather than subjectively. Descriptive statistics are used to describe basic features of data like counts and percentages while inferential statistics are used to infer properties of a population from a sample.
Statistics is the study of collecting, organizing, analyzing, and interpreting data. It involves planning data collection through surveys and experiments, and using descriptive statistics like means, frequencies, and percentages to summarize sample data numerically or graphically. Standard deviation is a measure of variability used to show how dispersed data points are from the average or mean value, with lower standard deviation indicating data is close to the mean and higher standard deviation showing data is more spread out.
This document provides an overview of biostatistics. It defines biostatistics as the branch of statistics dealing with biological and medical data, especially relating to humans. Some key points covered include:
- Descriptive statistics are used to describe data through methods like graphs and quantitative measures. Inferential statistics are used to characterize populations based on sample results.
- Biostatistics applies statistical techniques to collect, analyze, and interpret data from biological studies and health/medical research. It is used for tasks like evaluating vaccine effectiveness and informing public health priorities.
- Common analyses in biostatistics include measures of central tendency like the mean, median, and mode to summarize data, and measures of dispersion to quantify variation. Frequency distributions are
This document discusses measures of central tendency, which are summary measures that describe the middle or center of a data set with a single value. The three main measures are the mode, median, and mean. The mode is the most frequently occurring value, the median is the middle value when data are arranged in order, and the mean is the average calculated by summing all values and dividing by the total number of data points. The appropriate measure depends on the shape and type of data. Symmetrical distributions have equal mode, median and mean, while skewed distributions cause the mean to be "pulled" away from the middle.
Link your Lead Opportunities into Spreadsheet using odoo CRMCeline George
In Odoo 17 CRM, linking leads and opportunities to a spreadsheet can be done by exporting data or using Odoo’s built-in spreadsheet integration. To export, navigate to the CRM app, filter and select the relevant records, and then export the data in formats like CSV or XLSX, which can be opened in external spreadsheet tools such as Excel or Google Sheets.
This document discusses statistical procedures and their applications. It defines key statistical terminology like population, sample, parameter, and variable. It describes the two main types of statistics - descriptive and inferential statistics. Descriptive statistics summarize and describe data through measures of central tendency (mean, median, mode), dispersion, frequency, and position. The mean is the average value, the median is the middle value, and the mode is the most frequent value in a data set. Descriptive statistics help understand the characteristics of a sample or small population.
Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample and the measures. Together with simple graphics analysis, they form the basis of virtually every quantitative analysis of data.
This document discusses various statistical measures of dispersion. It defines dispersion as how spread out or varied a set of numerical data is from the average value. There are two types of measures - absolute, which have the same units as the data, and relative, which are unit-less and used to compare datasets. Examples of measures discussed include range, mean deviation, standard deviation, variance, and coefficient of variation. The document also covers frequency distributions, binomial distributions, chi-square tests, and data analysis processes.
Descriptive statistics is used to describe and summarize key characteristics of a data set. Commonly used measures include central tendency, such as the mean, median, and mode, and measures of dispersion like range, interquartile range, standard deviation, and variance. The mean is the average value calculated by summing all values and dividing by the number of values. The median is the middle value when data is arranged in order. The mode is the most frequently occurring value. Measures of dispersion describe how spread out the data is, such as the difference between highest and lowest values (range) or how close values are to the average (standard deviation).
Frequencies provides statistics and graphical displays to describe variables. It can order values by ascending/descending order or frequency. Key outputs include mean, median, mode, quartiles, standard deviation, variance, skewness, and kurtosis. Quartiles divide data into four equal groups. Skewness measures asymmetry while kurtosis measures clustering around the mean. Charts like pie charts, bar charts, and histograms can visualize the data distribution. Crosstabs forms two-way and multi-way tables to analyze relationships between variables.
Statistics is the methodology used to interpret and draw conclusions from collected data. It provides methods for designing research studies, summarizing and exploring data, and making predictions about phenomena represented by the data. A population is the set of all individuals of interest, while a sample is a subset of individuals from the population used for measurements. Parameters describe characteristics of the entire population, while statistics describe characteristics of a sample and can be used to infer parameters. Basic descriptive statistics used to summarize samples include the mean, standard deviation, and variance, which measure central tendency, spread, and how far data points are from the mean, respectively. The goal of statistical data analysis is to gain understanding from data through defined steps.
Statistics is the collection, organization, analysis, and presentation of data. It has become important for professionals, scientists, and citizens to make sense of large amounts of data. Statistics are used across many disciplines from science to business. There are two main types of statistical methods - descriptive statistics which summarize data through measures like the mean and median, and inferential statistics which make inferences about populations based on samples. Descriptive statistics describe data through measures of central tendency and variability, while inferential statistics allow inferences to be made from samples to populations through techniques like hypothesis testing.
Descriptive statistics are used to describe and summarize the basic features of data through measures of central tendency like the mean, median, and mode, and measures of variability like range, variance and standard deviation. The mean is the average value and is best for continuous, non-skewed data. The median is less affected by outliers and is best for skewed or ordinal data. The mode is the most frequent value and is used for categorical data. Measures of variability describe how spread out the data is, with higher values indicating more dispersion.
This document outlines the syllabus for a statistics and probabilities course, which covers topics such as descriptive statistics like measures of central tendency and dispersion, probability distributions, hypothesis testing, regression, and experimental design. It provides definitions and examples of key statistical concepts like populations, samples, variables, measures of central tendency including mean, median and mode, and measures of dispersion like range, mean deviation, variance and standard deviation. The course aims to teach students how to make informed judgments and decisions using statistical methods.
After data is collected, it must be processed which includes verifying, organizing, transforming, and extracting the data for analysis. There are several steps to processing data including categorizing it based on the study objectives, coding it numerically or alphabetically, and tabulating and analyzing it using appropriate statistical tools. Statistics help remove researcher bias by interpreting data statistically rather than subjectively. Descriptive statistics are used to describe basic features of data like counts and percentages while inferential statistics are used to infer properties of a population from a sample.
Statistics is the study of collecting, organizing, analyzing, and interpreting data. It involves planning data collection through surveys and experiments, and using descriptive statistics like means, frequencies, and percentages to summarize sample data numerically or graphically. Standard deviation is a measure of variability used to show how dispersed data points are from the average or mean value, with lower standard deviation indicating data is close to the mean and higher standard deviation showing data is more spread out.
This document provides an overview of biostatistics. It defines biostatistics as the branch of statistics dealing with biological and medical data, especially relating to humans. Some key points covered include:
- Descriptive statistics are used to describe data through methods like graphs and quantitative measures. Inferential statistics are used to characterize populations based on sample results.
- Biostatistics applies statistical techniques to collect, analyze, and interpret data from biological studies and health/medical research. It is used for tasks like evaluating vaccine effectiveness and informing public health priorities.
- Common analyses in biostatistics include measures of central tendency like the mean, median, and mode to summarize data, and measures of dispersion to quantify variation. Frequency distributions are
This document discusses measures of central tendency, which are summary measures that describe the middle or center of a data set with a single value. The three main measures are the mode, median, and mean. The mode is the most frequently occurring value, the median is the middle value when data are arranged in order, and the mean is the average calculated by summing all values and dividing by the total number of data points. The appropriate measure depends on the shape and type of data. Symmetrical distributions have equal mode, median and mean, while skewed distributions cause the mean to be "pulled" away from the middle.
Link your Lead Opportunities into Spreadsheet using odoo CRMCeline George
In Odoo 17 CRM, linking leads and opportunities to a spreadsheet can be done by exporting data or using Odoo’s built-in spreadsheet integration. To export, navigate to the CRM app, filter and select the relevant records, and then export the data in formats like CSV or XLSX, which can be opened in external spreadsheet tools such as Excel or Google Sheets.
Happy May and Taurus Season.
♥☽✷♥We have a large viewing audience for Presentations. So far my Free Workshop Presentations are doing excellent on views. I just started weeks ago within May. I am also sponsoring Alison within my blog and courses upcoming. See our Temple office for ongoing weekly updates.
https://ldmchapels.weebly.com
♥☽About: I am Adult EDU Vocational, Ordained, Certified and Experienced. Course genres are personal development for holistic health, healing, and self care/self serve.
Ajanta Paintings: Study as a Source of HistoryVirag Sontakke
This Presentation is prepared for Graduate Students. A presentation that provides basic information about the topic. Students should seek further information from the recommended books and articles. This presentation is only for students and purely for academic purposes. I took/copied the pictures/maps included in the presentation are from the internet. The presenter is thankful to them and herewith courtesy is given to all. This presentation is only for academic purposes.
What makes space feel generous, and how architecture address this generosity in terms of atmosphere, metrics, and the implications of its scale? This edition of #Untagged explores these and other questions in its presentation of the 2024 edition of the Master in Collective Housing. The Master of Architecture in Collective Housing, MCH, is a postgraduate full-time international professional program of advanced architecture design in collective housing presented by Universidad Politécnica of Madrid (UPM) and Swiss Federal Institute of Technology (ETH).
Yearbook MCH 2024. Master in Advanced Studies in Collective Housing UPM - ETH
What is the Philosophy of Statistics? (and how I was drawn to it)jemille6
What is the Philosophy of Statistics? (and how I was drawn to it)
Deborah G Mayo
At Dept of Philosophy, Virginia Tech
April 30, 2025
ABSTRACT: I give an introductory discussion of two key philosophical controversies in statistics in relation to today’s "replication crisis" in science: the role of probability, and the nature of evidence, in error-prone inference. I begin with a simple principle: We don’t have evidence for a claim C if little, if anything, has been done that would have found C false (or specifically flawed), even if it is. Along the way, I’ll sprinkle in some autobiographical reflections.
A measles outbreak originating in West Texas has been linked to confirmed cases in New Mexico, with additional cases reported in Oklahoma and Kansas. The current case count is 817 from Texas, New Mexico, Oklahoma, and Kansas. 97 individuals have required hospitalization, and 3 deaths, 2 children in Texas and one adult in New Mexico. These fatalities mark the first measles-related deaths in the United States since 2015 and the first pediatric measles death since 2003.
The YSPH Virtual Medical Operations Center Briefs (VMOC) were created as a service-learning project by faculty and graduate students at the Yale School of Public Health in response to the 2010 Haiti Earthquake. Each year, the VMOC Briefs are produced by students enrolled in Environmental Health Science Course 581 - Public Health Emergencies: Disaster Planning and Response. These briefs compile diverse information sources – including status reports, maps, news articles, and web content– into a single, easily digestible document that can be widely shared and used interactively. Key features of this report include:
- Comprehensive Overview: Provides situation updates, maps, relevant news, and web resources.
- Accessibility: Designed for easy reading, wide distribution, and interactive use.
- Collaboration: The “unlocked" format enables other responders to share, copy, and adapt seamlessly. The students learn by doing, quickly discovering how and where to find critical information and presenting it in an easily understood manner.
CURRENT CASE COUNT: 817 (As of 05/3/2025)
• Texas: 688 (+20)(62% of these cases are in Gaines County).
• New Mexico: 67 (+1 )(92.4% of the cases are from Eddy County)
• Oklahoma: 16 (+1)
• Kansas: 46 (32% of the cases are from Gray County)
HOSPITALIZATIONS: 97 (+2)
• Texas: 89 (+2) - This is 13.02% of all TX cases.
• New Mexico: 7 - This is 10.6% of all NM cases.
• Kansas: 1 - This is 2.7% of all KS cases.
DEATHS: 3
• Texas: 2 – This is 0.31% of all cases
• New Mexico: 1 – This is 1.54% of all cases
US NATIONAL CASE COUNT: 967 (Confirmed and suspected):
INTERNATIONAL SPREAD (As of 4/2/2025)
• Mexico – 865 (+58)
‒Chihuahua, Mexico: 844 (+58) cases, 3 hospitalizations, 1 fatality
• Canada: 1531 (+270) (This reflects Ontario's Outbreak, which began 11/24)
‒Ontario, Canada – 1243 (+223) cases, 84 hospitalizations.
• Europe: 6,814
Ancient Stone Sculptures of India: As a Source of Indian HistoryVirag Sontakke
This Presentation is prepared for Graduate Students. A presentation that provides basic information about the topic. Students should seek further information from the recommended books and articles. This presentation is only for students and purely for academic purposes. I took/copied the pictures/maps included in the presentation are from the internet. The presenter is thankful to them and herewith courtesy is given to all. This presentation is only for academic purposes.
The insect cuticle is a tough, external exoskeleton composed of chitin and proteins, providing protection and support. However, as insects grow, they need to shed this cuticle periodically through a process called moulting. During moulting, a new cuticle is prepared underneath, and the old one is shed, allowing the insect to grow, repair damaged cuticle, and change form. This process is crucial for insect development and growth, enabling them to transition from one stage to another, such as from larva to pupa or adult.
This slide is an exercise for the inquisitive students preparing for the competitive examinations of the undergraduate and postgraduate students. An attempt is being made to present the slide keeping in mind the New Education Policy (NEP). An attempt has been made to give the references of the facts at the end of the slide. If new facts are discovered in the near future, this slide will be revised.
This presentation is related to the brief History of Kashmir (Part-I) with special reference to Karkota Dynasty. In the seventh century a person named Durlabhvardhan founded the Karkot dynasty in Kashmir. He was a functionary of Baladitya, the last king of the Gonanda dynasty. This dynasty ruled Kashmir before the Karkot dynasty. He was a powerful king. Huansang tells us that in his time Taxila, Singhpur, Ursha, Punch and Rajputana were parts of the Kashmir state.
Happy May and Happy Weekend, My Guest Students.
Weekends seem more popular for Workshop Class Days lol.
These Presentations are timeless. Tune in anytime, any weekend.
<<I am Adult EDU Vocational, Ordained, Certified and Experienced. Course genres are personal development for holistic health, healing, and self care. I am also skilled in Health Sciences. However; I am not coaching at this time.>>
A 5th FREE WORKSHOP/ Daily Living.
Our Sponsor / Learning On Alison:
Sponsor: Learning On Alison:
— We believe that empowering yourself shouldn’t just be rewarding, but also really simple (and free). That’s why your journey from clicking on a course you want to take to completing it and getting a certificate takes only 6 steps.
Hopefully Before Summer, We can add our courses to the teacher/creator section. It's all within project management and preps right now. So wish us luck.
Check our Website for more info: https://ldmchapels.weebly.com
Get started for Free.
Currency is Euro. Courses can be free unlimited. Only pay for your diploma. See Website for xtra assistance.
Make sure to convert your cash. Online Wallets do vary. I keep my transactions safe as possible. I do prefer PayPal Biz. (See Site for more info.)
Understanding Vibrations
If not experienced, it may seem weird understanding vibes? We start small and by accident. Usually, we learn about vibrations within social. Examples are: That bad vibe you felt. Also, that good feeling you had. These are common situations we often have naturally. We chit chat about it then let it go. However; those are called vibes using your instincts. Then, your senses are called your intuition. We all can develop the gift of intuition and using energy awareness.
Energy Healing
First, Energy healing is universal. This is also true for Reiki as an art and rehab resource. Within the Health Sciences, Rehab has changed dramatically. The term is now very flexible.
Reiki alone, expanded tremendously during the past 3 years. Distant healing is almost more popular than one-on-one sessions? It’s not a replacement by all means. However, its now easier access online vs local sessions. This does break limit barriers providing instant comfort.
Practice Poses
You can stand within mountain pose Tadasana to get started.
Also, you can start within a lotus Sitting Position to begin a session.
There’s no wrong or right way. Maybe if you are rushing, that’s incorrect lol. The key is being comfortable, calm, at peace. This begins any session.
Also using props like candles, incenses, even going outdoors for fresh air.
(See Presentation for all sections, THX)
Clearing Karma, Letting go.
Now, that you understand more about energies, vibrations, the practice fusions, let’s go deeper. I wanted to make sure you all were comfortable. These sessions are for all levels from beginner to review.
Again See the presentation slides, Thx.
Descriptive Statistics– Summarizing and Visualizing Data.pptx
1. Descriptive Statistics – Summarizing and Visualizing Data
Once data has been collected, the first step is to describe it. Descriptive statistics provide the tools to summarize and organize
data so we can see patterns and trends. The goal here isn’t to draw conclusions about a population (that’s inferential statistics),
but to get a solid grasp of the sample at hand.
There are two major forms of descriptive statistics: measures of central tendency and measures of variability (dispersion).
Measures of Central Tendency tell us where the center of a dataset lies:
•Mean (average): Add up all values and divide by the number of values. It’s sensitive to outliers.
•Median: The middle value when data is ordered. It’s robust against outliers.
•Mode: The most frequently occurring value(s). Useful for categorical data.
Measures of Variability show us how spread out the data is:
•Range: Difference between the highest and lowest values.
•Variance: Average of squared deviations from the mean, showing how spread out data points are.
•Standard Deviation: The square root of the variance; gives a sense of average distance from the mean.
•Interquartile Range (IQR): The range of the middle 50% of data, between Q1 (25th percentile) and Q3 (75th percentile), less
affected by outliers.
Data visualization is a powerful companion to numeric descriptions. Common tools include:
•Histograms (for frequency distribution of numerical data),
•Box plots (to visualize median, quartiles, and outliers),
•Bar charts (for categorical variables),
•Scatter plots (to show relationships between two quantitative variables).
Another useful concept is distribution shape. Data can be symmetrical, skewed, uniform, or bimodal. A classic example is the
normal distribution (bell curve), which underpins much of inferential statistics. Understanding whether your data is
approximately normal affects decisions down the line.