SlideShare a Scribd company logo
Lesson 1
MEANING AND IMPORTANCE
OF STATISTICS
OBJECTIVES:
After the successful discussion in class, you
will be able to:
 Define statistics and discuss the history of
statistics;
 Understand the terms related to statistics;
and
 Differentiate the two branches of
Statistics.
STATISTICS
 It is imperative that every Filipino student
have a clear understanding of the nature
and definition of Statistics as a field of
discipline. However, understanding the
nature of statistics requires the students to
go beyond its definition and appreciate its
application.
Definitions of Statistics
 Plural Sense: Statistics pertains to
numerical data or figures that can be
presented and counted out of observations
done by individual.
 Singular Sense: Statistics is a branch of
science that deals with the collection,
tabulation and presentation. Analysis and
interpretation of the data that can be used
when making decisions in the face of
uncertainty.
HISTORY OF STATISTICS
 Simple forms of statistics have been used
to record numbers of people, animals, and
inanimate objects on skins, slabs, or sticks
of wood and the walls of caves.
 Before 3000 B.C., Babylonians small clay
tablets
 The Egyptians analyzed the population
and material wealth of their country before
building a pyramid.
 Aside from secular records, Statistics could be
seen in Biblical accounts such as the one
recorded in numbers 31:25-41 when, during the
times of Moses, statistics were gathered for
purposes such as taxation, military service and
priestly duties.
 Statistics has evolved from the word “Statistik”
which was popularized by a German political
scientist Gottfried Achenwall. The word was
derived from Latin word “Status” or the Italian
word “Statista” which means “State”. Its English
use was introduced early in the 19th Century by
Sir John Sinclair to mean “the collection and
classification of data”.
SIGNIFICANCE OF STATISTICS
 Good decisions are driven by data. Proper
evaluation and interpretation of these data
could be useful in making the best decision
for practicality every facet of man’s daily
activities.
Significance of Statistics in the ff. areas:
 Society
 Business and Industry
 Transportation Safety
 Peace and Order
 Sports
 Consumers
 Health
 Agriculture
AREAS OF STATISTICS
 Descriptive Statistics
 Is the discipline of quantitatively describing main features
of a collection of data without drawing conclusions about
a large group. Descriptive statistics can be thought of as
a straightforward presentation of facts.

 Inferential Statistics
 Concerned with the analysis of a subset of data or
sample leading to predictions or inferences about the
entire set of data or population. Some examples shows
the analysis of the samples are generalized for the large
population that the sample represents.
Figure 1.1
Age-Sex Population Pyramid
Philippines: 2010
Meaning and Importance of Statistics
Lesson 2
TERMS AND SYMBOLS USED IN
STATISTICS
OBJECTIVES:
After the successful discussion in class, you
will be able to:
 Understand the terms related to statistics;
 Identify the different categories and types
of variables;
 Differentiate population from a sample;
 Distinguish parametric test from non-
parametric test; and
 Familiarize the different statistical symbols
used in this book.
VARIABLES
 Figures or any characteristics, numbers, or
quantity that can be measured or counted
and varies over time and on different
individual or object under consideration.
Arrows are used to illustrate relationships
among variables.
Types of variables
 1. Independent Variable – experimental
or predictor
 2. Dependent Variable – outcome that is
presumed effect
 3. Extraneous Variables – interferes or
interacts with IV
Classification of Variables
 Can be categorize according to the manner of measurement
and presentation.

 1. Qualitative Variable – categorical variable. It describes the
qualities or characteristics of the samples

 2. Quantitative Variable – give numerical responses
representing an amount or number of something.

 3. Discrete Quantitative Variable – countable variable. It
assumes fixed or countable values of something being
measured.

 4. Continuous Quantitative Variable –non countable
variable. It cannot take on finite values but the values are
associated with points on an interval of the real line.
Kinds of Variables
VARIABLES
QUANTITATIVE
DISCRETE CONTINUOUS
QUALITATIVE
STATISTICAL TERMS
 Measurement – is the process done by
individual to determine the value or label of
the variable based on what has been
observed.
 Observation – is defined as the realized
value of the variable
 Population – is the collection of things or
observational units under consideration. It
is an aggregate set of individuals with
varied characteristics and could be classify
according to age and sex.
Three (3) Factors Influencing Population
 1. Fertility – this pertains to the birth rate
in a community
 2. Mortality – this is the death rate in a
community
 3. Migration – this is the number of people
moving in and out of a community.
 The Statistical Population is the set of
all possible values of the variable.
 POPULATION– changes in population and its
structure significantly affects policy making and the
development of a certain community.
 SAMPLE – commonly defined as the subset of
population that shares the same characteristics of
the population
 SAMPLING – process of selecting a part or subset
of a population. You can use your sample to make
inferences for your population.
Common Reasons for Sampling
 Limited budget, time constraints, lack of manpower,
accessibility, peace and order of the area, size of the
population, and availability and cost of the
experimental materials.
Types of Sampling Techniques
 Probability Sampling
It is the one in which each sample has the
same probability of being chosen.
 Non-Probability Sampling
In this type of population sampling, members of
the population do not have equal chance of
being selected.
 No rule sampling
We take sample without any rule
Types of Probability Sampling
 Random Sampling
 Systematic Sampling
 Stratified Sampling
 A. Proportionate Stratified Random
Sampling
 B. Disproportionate Stratified Random
Sampling
 Cluster Sampling
Types of Non-Probability Sampling
 Convenience Sampling
 Sequential Sampling
 Quota Sampling
 Judgmental/ Purposive Sampling
 Snowball Sampling
 Information is limited to useful facts that an analyst or a
decision maker can use in solving problems.

 Parameter is a set of numerical figures describing the
characteristic of the population.

 Data mining is simply the process of examining or going to
the details of the data. Important details are carefully studied
and scrutinized.

 Sex is the biological description of a person either a male or a
female.

 Operational Definition is how you define the word/s
according to its use and purpose.
KINDS OF STATISTICAL TEST
 1. PARAMETRIC TEST
 Requires normality of the distribution and the
levels of measurement should be either interval
or ratio. The observations must be independent
and the populations must have the same
variances.
 It implies that parametric tests are more efficient
than its non-parametric tests counterpart
 Parametric tests are more appropriate when
sample sizes are small.
KINDS OF PARAMETRIC TEST
 1. T-test
 2. Z-test
 3. F-test
 4. Analysis of Variance
 5. Pearson Product Moment Coefficient of
Correlation
 6. Simple Linear Regression
 7. Multiple Regression Analysis
 2. NON-PARAMETRIC TEST
 Does not require normality of the
distribution and the levels of measurement
must be either interval ordinal.
STATISTICAL SYMBOLS
 ∑
 N Xm
 n i
 F X
 <F Md
 >F X
 Cs Y
 SD R
 S² R²
 CD
Lesson 3
LEVELS OF MEASUREMENT
OBJECTIVES:
After the successful discussion in class, you will be
able to:
 Define and distinguish nominal, ordinal,
interval, and ratio scales;
 Enumerate the limitations of each scale;
 Apply measurement scales in choosing
statistical tools; and
 Give examples of errors that can be made by
having inadequate understanding on the proper
use of measurement scales.
 Variables are considered the substance of statistics.
Before we can conduct statistical investigation and
analysis, we need first to fully understand the nature
and measurements of the variables to be studied.
 The in-depth understanding of your variables may
result to correct and usable inferences or
conclusions.
 When we choose our statistical tools to be used in
studying our variables, we need to consider the four
measurement scales. For parametric test, the
measurement scales should be either interval or
ratio, and for non-parametric test, the
measurement scales should be either nominal or
ordinal.
FOUR LEVELS OF MEASUREMENT
SCALES
 NOMINAL LEVEL
 ORDINAL LEVEL
 INTERVAL LEVEL
 RATIO LEVEL
Lesson 4
Data Collection and
Presentation
Data Collection Presentation
 Data can be defined as groups of
information that represent the qualitative or
quantitative attributes of a variable or set of
variables, which is the same as saying that
data can be any set of information that
describes a given entry. Data in statistics
can be classified into grouped data and
ungrouped data.
Ungrouped Data
 Any data that you first gathered and is the
data in the raw. An example of ungrouped
data is any list of numbers that you can
think of.
 Example:
 The marks obtained by 20 students in
class in a certain examination are given
below:
 21, 23, 19, 17, 12, 15, 15, 17, 17, 19, 23,
23, 21, 23, 25, 25, 21, 19, 19, 19
Array
 An arrangement of ungrouped data in
ascending or descending order of
magnitude is called an array.
 Example:
 The marks obtained by 20 students in
class in a certain examination are given
below:
 21, 23, 19, 17, 12, 15, 15, 17, 17, 19, 23,
23, 21, 23, 25, 25, 21, 19, 19, 19
 (Arrange the scores in ascending order)
Frequency Distribution Table or
Frequency Chart
 A frequency is the number of times a data
value occurs. For example, if ten students
score 80 in Statistics, then the score of 80
has a frequency of 10. Frequency is often
represented by letter f.
 A Frequency Chart is made by arranging
data values in ascending order of
magnitude along with their frequencies.
Example:
 We take each observation from the data, one at a time,
and indicate the frequency (the number of times the
observation has occurred in the data) by small line, called
tally marks. For convenience we write tally marks in
bunches of five, the fifth one crossing the fourth
diagonally. In the table so formed, the sum of all the
frequency is equal to the total number of observations in
the given data.
Marks Tally Marks Frequency
Grouped Data
 Is data that has been organized into
groups known as classes.
 Grouped data has been ‘classified’ and
thus some level of data analysis has taken
place, which means that the data is no
longer raw.
 When the set of data values are spread out, it is
difficult to set up a frequency table for every data
value as there will be too many rows table. So
we group the data into class intervals (or
groups) to help us organize, interpret and
analyze the data.
 Each class is bounded by two figures, which are
called class limits. The figure on the left side of
a class is called its lower limit and that on its
right is called its upper limit.
 Ideally, we should have between five and ten
rows in a frequency table. Bear this in mind when
deciding the size of the class interval (or group).
TYPES OF GROUPED FREQUENCY
DISTRIBUTION
 1. Exclusive form (or Continuous Interval
Form): A frequency distribution in which the
upper limit of each class is excluded and lower
limit is included is called an exclusive form.
 2. Inclusive Form (or Discontinuous
Interval Form): A frequency distribution in
which upper limit as well as lower limit is
included is called an inclusive form.
Calculating Class Interval
 Given a set of raw or ungrouped data, how
would you group that data into suitable
classes that are easy to work with and at
the same time meaningful?
 The first step is to determine how many
classes you want to have. Next, you
subtract the lowest value in the data set
from the highest value in the data set and
then you divide by the number of classes
that you want to have.
Formula:
The general rules for constructing a
frequency distribution are:
 There should not be too few or too many classes
 Insofar as possible, equal class intervals are
preferred. But the first and last classes can be
open-ended to cater for extreme values.
 Each class should have a class mark to
represent the classes. It is also named as the
class midpoint of the ith class. It can be found by
taking simple average of the class boundaries or
the class limits of the same class.
Example:
 Group the following raw data into ten
classes.
 An array of the marks of 25 students in
ascending order.
 8, 10, 11, 12, 14, 16, 16, 16, 20, 24, 25, 25,
25, 29, 30, 33, 35, 36, 37, 40, 40, 42, 45,
45, 48.
GRAPHICAL METHODS
 Frequency distributions and are usually illustrated
graphically by plotting various types of graphs:
1. Bar Graph - A bar graph
is a way of summarizing a
set of categorical data. It
displays the data using a
number of rectangles, of the
same width, each of which
represents a particular
category. Bar graphs can be
displayed horizontally or
vertically and they are
usually drawn with gap
between the bars
GRAPHICAL METHODS
2. Histogram - A
histogram is a way of
summarizing data that
are measured on an
interval scale (either
discrete or continuous). It
is often used in
exploratory data analysis
to illustrate the features
of the distribution of the
data in a convenient
form.
GRAPHICAL METHODS
3. Pie Chart - A pie chart is used to display a set
of categorical data. It is a circle, which is divided
into segments. Each segment represents a
particular category. The area of each segment is
proportional to the number of cases in that
category.
GRAPHICAL METHODS
4. Line Graph - A line graph is particularly useful
when we want to show the trend of a variable
over time. Time is displayed on the horizontal axis
(x-axis) and the variable is displayed on the
vertical axis (y-axis).
Did you like this Powerpoint
presentation?
• We offer some educational services like:
- Powerpoint presentation maker
- Proof-reader
- Content creator
- Layout designer
• If you are interested, kindly contact us at flippedchannel27@gmail.com
• For content videos, subscribe to our youtube channel: FlippED Channel
Ad

More Related Content

What's hot (20)

Introduction to Statistics (Part -I)
Introduction to Statistics (Part -I)Introduction to Statistics (Part -I)
Introduction to Statistics (Part -I)
YesAnalytics
 
Importance of statistics
Importance of statisticsImportance of statistics
Importance of statistics
SayantiniBiswas
 
Introduction to statistics
Introduction to statisticsIntroduction to statistics
Introduction to statistics
akbhanj
 
Measure OF Central Tendency
Measure OF Central TendencyMeasure OF Central Tendency
Measure OF Central Tendency
Iqrabutt038
 
Applications of statistics
Applications of statisticsApplications of statistics
Applications of statistics
Vinit Suchak
 
descriptive and inferential statistics
descriptive and inferential statisticsdescriptive and inferential statistics
descriptive and inferential statistics
Mona Sajid
 
Descriptive statistics
Descriptive statisticsDescriptive statistics
Descriptive statistics
Sarfraz Ahmad
 
Statistics "Descriptive & Inferential"
Statistics "Descriptive & Inferential"Statistics "Descriptive & Inferential"
Statistics "Descriptive & Inferential"
Dalia El-Shafei
 
DIstinguish between Parametric vs nonparametric test
 DIstinguish between Parametric vs nonparametric test DIstinguish between Parametric vs nonparametric test
DIstinguish between Parametric vs nonparametric test
sai prakash
 
Population & sample lecture 04
Population & sample lecture 04Population & sample lecture 04
Population & sample lecture 04
DrZahid Khan
 
Sampling techniques
Sampling techniques  Sampling techniques
Sampling techniques
Dr. Ankita Chaturvedi
 
Introduction to statistics
Introduction to statisticsIntroduction to statistics
Introduction to statistics
Santosh Bhandari
 
Data Analysis and Statistics
Data Analysis and StatisticsData Analysis and Statistics
Data Analysis and Statistics
T.S. Lim
 
Types of Statistics
Types of StatisticsTypes of Statistics
Types of Statistics
loranel
 
Basic Statistics
Basic  StatisticsBasic  Statistics
Basic Statistics
Chie Pegollo
 
Parametric and non parametric test
Parametric and non parametric testParametric and non parametric test
Parametric and non parametric test
Ajay Malpani
 
Introduction to Statistics
Introduction to StatisticsIntroduction to Statistics
Introduction to Statistics
aan786
 
Introduction to statistics...ppt rahul
Introduction to statistics...ppt rahulIntroduction to statistics...ppt rahul
Introduction to statistics...ppt rahul
Rahul Dhaker
 
SCOPE, IMPORTANCE & USES OF STATISTICS
SCOPE, IMPORTANCE & USES OF STATISTICS      SCOPE, IMPORTANCE & USES OF STATISTICS
SCOPE, IMPORTANCE & USES OF STATISTICS
Muhammad Yousaf
 
Measures of dispersion or variation
Measures of dispersion or variationMeasures of dispersion or variation
Measures of dispersion or variation
Raj Teotia
 
Introduction to Statistics (Part -I)
Introduction to Statistics (Part -I)Introduction to Statistics (Part -I)
Introduction to Statistics (Part -I)
YesAnalytics
 
Importance of statistics
Importance of statisticsImportance of statistics
Importance of statistics
SayantiniBiswas
 
Introduction to statistics
Introduction to statisticsIntroduction to statistics
Introduction to statistics
akbhanj
 
Measure OF Central Tendency
Measure OF Central TendencyMeasure OF Central Tendency
Measure OF Central Tendency
Iqrabutt038
 
Applications of statistics
Applications of statisticsApplications of statistics
Applications of statistics
Vinit Suchak
 
descriptive and inferential statistics
descriptive and inferential statisticsdescriptive and inferential statistics
descriptive and inferential statistics
Mona Sajid
 
Descriptive statistics
Descriptive statisticsDescriptive statistics
Descriptive statistics
Sarfraz Ahmad
 
Statistics "Descriptive & Inferential"
Statistics "Descriptive & Inferential"Statistics "Descriptive & Inferential"
Statistics "Descriptive & Inferential"
Dalia El-Shafei
 
DIstinguish between Parametric vs nonparametric test
 DIstinguish between Parametric vs nonparametric test DIstinguish between Parametric vs nonparametric test
DIstinguish between Parametric vs nonparametric test
sai prakash
 
Population & sample lecture 04
Population & sample lecture 04Population & sample lecture 04
Population & sample lecture 04
DrZahid Khan
 
Introduction to statistics
Introduction to statisticsIntroduction to statistics
Introduction to statistics
Santosh Bhandari
 
Data Analysis and Statistics
Data Analysis and StatisticsData Analysis and Statistics
Data Analysis and Statistics
T.S. Lim
 
Types of Statistics
Types of StatisticsTypes of Statistics
Types of Statistics
loranel
 
Parametric and non parametric test
Parametric and non parametric testParametric and non parametric test
Parametric and non parametric test
Ajay Malpani
 
Introduction to Statistics
Introduction to StatisticsIntroduction to Statistics
Introduction to Statistics
aan786
 
Introduction to statistics...ppt rahul
Introduction to statistics...ppt rahulIntroduction to statistics...ppt rahul
Introduction to statistics...ppt rahul
Rahul Dhaker
 
SCOPE, IMPORTANCE & USES OF STATISTICS
SCOPE, IMPORTANCE & USES OF STATISTICS      SCOPE, IMPORTANCE & USES OF STATISTICS
SCOPE, IMPORTANCE & USES OF STATISTICS
Muhammad Yousaf
 
Measures of dispersion or variation
Measures of dispersion or variationMeasures of dispersion or variation
Measures of dispersion or variation
Raj Teotia
 

Similar to Meaning and Importance of Statistics (20)

Probability in statistics
Probability in statisticsProbability in statistics
Probability in statistics
Sukirti Garg
 
New statistics
New statisticsNew statistics
New statistics
Fatima Bianca Gueco
 
Statistics1(finals)
Statistics1(finals)Statistics1(finals)
Statistics1(finals)
Fatima Bianca Gueco
 
Finals Stat 1
Finals Stat 1Finals Stat 1
Finals Stat 1
Fatima Bianca Gueco
 
Probability and statistics
Probability and statisticsProbability and statistics
Probability and statistics
trixiacruz
 
Probability and statistics(exercise answers)
Probability and statistics(exercise answers)Probability and statistics(exercise answers)
Probability and statistics(exercise answers)
Fatima Bianca Gueco
 
Probability and statistics
Probability and statisticsProbability and statistics
Probability and statistics
Fatima Bianca Gueco
 
Probability and statistics
Probability and statisticsProbability and statistics
Probability and statistics
Fatima Bianca Gueco
 
Probability and statistics(assign 7 and 8)
Probability and statistics(assign 7 and 8)Probability and statistics(assign 7 and 8)
Probability and statistics(assign 7 and 8)
Fatima Bianca Gueco
 
Review of descriptive statistics
Review of descriptive statisticsReview of descriptive statistics
Review of descriptive statistics
Aniceto Naval
 
Lecture 1 - Introduction to Data Analysis (1).pdf
Lecture 1 - Introduction to Data Analysis (1).pdfLecture 1 - Introduction to Data Analysis (1).pdf
Lecture 1 - Introduction to Data Analysis (1).pdf
ErenYeager916808
 
Introduction To Statistics
Introduction To StatisticsIntroduction To Statistics
Introduction To Statistics
albertlaporte
 
chapter 1.pptx
chapter 1.pptxchapter 1.pptx
chapter 1.pptx
ObsaHassanMohamed
 
biostatistics 75 best.pdfhjkhhhjjgghjuuy
biostatistics 75 best.pdfhjkhhhjjgghjuuybiostatistics 75 best.pdfhjkhhhjjgghjuuy
biostatistics 75 best.pdfhjkhhhjjgghjuuy
AbdirahmanIbrahimkad
 
543957106-Introduction-Basic-Concepts-in-Statistics-PPT - Copy.pptx
543957106-Introduction-Basic-Concepts-in-Statistics-PPT - Copy.pptx543957106-Introduction-Basic-Concepts-in-Statistics-PPT - Copy.pptx
543957106-Introduction-Basic-Concepts-in-Statistics-PPT - Copy.pptx
ssuser46ca42
 
PPT Chapter 1_Stat 1.pptx Statiscs Statisticc
PPT Chapter 1_Stat 1.pptx Statiscs StatisticcPPT Chapter 1_Stat 1.pptx Statiscs Statisticc
PPT Chapter 1_Stat 1.pptx Statiscs Statisticc
HendrikAndrian
 
mathEMATICS GRADE 7 QUARTER 3 WEEK 1.pptx
mathEMATICS GRADE  7 QUARTER 3 WEEK 1.pptxmathEMATICS GRADE  7 QUARTER 3 WEEK 1.pptx
mathEMATICS GRADE 7 QUARTER 3 WEEK 1.pptx
AnaBretaa1
 
math 7 Q3 W1.pptxFFAFJAFJAJFAFJAFJJAFJAJFAJF
math 7 Q3 W1.pptxFFAFJAFJAJFAFJAFJJAFJAJFAJFmath 7 Q3 W1.pptxFFAFJAFJAJFAFJAFJJAFJAJFAJF
math 7 Q3 W1.pptxFFAFJAFJAJFAFJAFJJAFJAJFAJF
raemgaoat28
 
2-nature.pptx
2-nature.pptx2-nature.pptx
2-nature.pptx
ecnerwalordas
 
Statistic quantitative qualitative sample
Statistic quantitative qualitative sampleStatistic quantitative qualitative sample
Statistic quantitative qualitative sample
AngeliCalumpit
 
Probability in statistics
Probability in statisticsProbability in statistics
Probability in statistics
Sukirti Garg
 
Probability and statistics
Probability and statisticsProbability and statistics
Probability and statistics
trixiacruz
 
Probability and statistics(exercise answers)
Probability and statistics(exercise answers)Probability and statistics(exercise answers)
Probability and statistics(exercise answers)
Fatima Bianca Gueco
 
Probability and statistics(assign 7 and 8)
Probability and statistics(assign 7 and 8)Probability and statistics(assign 7 and 8)
Probability and statistics(assign 7 and 8)
Fatima Bianca Gueco
 
Review of descriptive statistics
Review of descriptive statisticsReview of descriptive statistics
Review of descriptive statistics
Aniceto Naval
 
Lecture 1 - Introduction to Data Analysis (1).pdf
Lecture 1 - Introduction to Data Analysis (1).pdfLecture 1 - Introduction to Data Analysis (1).pdf
Lecture 1 - Introduction to Data Analysis (1).pdf
ErenYeager916808
 
Introduction To Statistics
Introduction To StatisticsIntroduction To Statistics
Introduction To Statistics
albertlaporte
 
biostatistics 75 best.pdfhjkhhhjjgghjuuy
biostatistics 75 best.pdfhjkhhhjjgghjuuybiostatistics 75 best.pdfhjkhhhjjgghjuuy
biostatistics 75 best.pdfhjkhhhjjgghjuuy
AbdirahmanIbrahimkad
 
543957106-Introduction-Basic-Concepts-in-Statistics-PPT - Copy.pptx
543957106-Introduction-Basic-Concepts-in-Statistics-PPT - Copy.pptx543957106-Introduction-Basic-Concepts-in-Statistics-PPT - Copy.pptx
543957106-Introduction-Basic-Concepts-in-Statistics-PPT - Copy.pptx
ssuser46ca42
 
PPT Chapter 1_Stat 1.pptx Statiscs Statisticc
PPT Chapter 1_Stat 1.pptx Statiscs StatisticcPPT Chapter 1_Stat 1.pptx Statiscs Statisticc
PPT Chapter 1_Stat 1.pptx Statiscs Statisticc
HendrikAndrian
 
mathEMATICS GRADE 7 QUARTER 3 WEEK 1.pptx
mathEMATICS GRADE  7 QUARTER 3 WEEK 1.pptxmathEMATICS GRADE  7 QUARTER 3 WEEK 1.pptx
mathEMATICS GRADE 7 QUARTER 3 WEEK 1.pptx
AnaBretaa1
 
math 7 Q3 W1.pptxFFAFJAFJAJFAFJAFJJAFJAJFAJF
math 7 Q3 W1.pptxFFAFJAFJAJFAFJAFJJAFJAJFAJFmath 7 Q3 W1.pptxFFAFJAFJAJFAFJAFJJAFJAJFAJF
math 7 Q3 W1.pptxFFAFJAFJAJFAFJAFJJAFJAJFAJF
raemgaoat28
 
Statistic quantitative qualitative sample
Statistic quantitative qualitative sampleStatistic quantitative qualitative sample
Statistic quantitative qualitative sample
AngeliCalumpit
 
Ad

More from Flipped Channel (20)

Professional Education - 20 items I LET Reviewer
Professional Education - 20 items I LET ReviewerProfessional Education - 20 items I LET Reviewer
Professional Education - 20 items I LET Reviewer
Flipped Channel
 
Math Specialization - 20 items I LET Reviewer
Math Specialization - 20 items I LET ReviewerMath Specialization - 20 items I LET Reviewer
Math Specialization - 20 items I LET Reviewer
Flipped Channel
 
20-item Professional Education 1 LET Reviewer | FlippED
20-item Professional Education 1 LET Reviewer | FlippED20-item Professional Education 1 LET Reviewer | FlippED
20-item Professional Education 1 LET Reviewer | FlippED
Flipped Channel
 
20-item Mathematics Specialization 1 LET Reviewer | FlippED
20-item Mathematics Specialization 1 LET Reviewer | FlippED20-item Mathematics Specialization 1 LET Reviewer | FlippED
20-item Mathematics Specialization 1 LET Reviewer | FlippED
Flipped Channel
 
20-item General Education Random LET Reviewers | FlippED
20-item General Education Random LET Reviewers | FlippED20-item General Education Random LET Reviewers | FlippED
20-item General Education Random LET Reviewers | FlippED
Flipped Channel
 
Mathematics in the Modern World - GE3 - Set Theory
Mathematics in the Modern World - GE3 - Set TheoryMathematics in the Modern World - GE3 - Set Theory
Mathematics in the Modern World - GE3 - Set Theory
Flipped Channel
 
History of Mathematics - Early to Present Period
History of Mathematics - Early to Present PeriodHistory of Mathematics - Early to Present Period
History of Mathematics - Early to Present Period
Flipped Channel
 
Measures of Position - Elementary Statistics
Measures of Position - Elementary StatisticsMeasures of Position - Elementary Statistics
Measures of Position - Elementary Statistics
Flipped Channel
 
Adding and Subtracting Integers
Adding  and Subtracting IntegersAdding  and Subtracting Integers
Adding and Subtracting Integers
Flipped Channel
 
Typology of learners with special need Part 2
Typology of learners with special need Part 2Typology of learners with special need Part 2
Typology of learners with special need Part 2
Flipped Channel
 
Typology of learners with special need part 1
Typology of learners with special need part 1Typology of learners with special need part 1
Typology of learners with special need part 1
Flipped Channel
 
Philosophical, historical &amp; sociological bases of special and inclusive e...
Philosophical, historical &amp; sociological bases of special and inclusive e...Philosophical, historical &amp; sociological bases of special and inclusive e...
Philosophical, historical &amp; sociological bases of special and inclusive e...
Flipped Channel
 
Legal bases of special and inclusive education
Legal bases of special and inclusive educationLegal bases of special and inclusive education
Legal bases of special and inclusive education
Flipped Channel
 
Drama tasks
Drama tasksDrama tasks
Drama tasks
Flipped Channel
 
Drama and theater
Drama and theaterDrama and theater
Drama and theater
Flipped Channel
 
Speech activities
Speech activitiesSpeech activities
Speech activities
Flipped Channel
 
Public speaking in society
Public speaking in societyPublic speaking in society
Public speaking in society
Flipped Channel
 
Speech and Communication
Speech and CommunicationSpeech and Communication
Speech and Communication
Flipped Channel
 
Lesson planning Dos and Donts
Lesson planning Dos and DontsLesson planning Dos and Donts
Lesson planning Dos and Donts
Flipped Channel
 
Teaching Listening
Teaching ListeningTeaching Listening
Teaching Listening
Flipped Channel
 
Professional Education - 20 items I LET Reviewer
Professional Education - 20 items I LET ReviewerProfessional Education - 20 items I LET Reviewer
Professional Education - 20 items I LET Reviewer
Flipped Channel
 
Math Specialization - 20 items I LET Reviewer
Math Specialization - 20 items I LET ReviewerMath Specialization - 20 items I LET Reviewer
Math Specialization - 20 items I LET Reviewer
Flipped Channel
 
20-item Professional Education 1 LET Reviewer | FlippED
20-item Professional Education 1 LET Reviewer | FlippED20-item Professional Education 1 LET Reviewer | FlippED
20-item Professional Education 1 LET Reviewer | FlippED
Flipped Channel
 
20-item Mathematics Specialization 1 LET Reviewer | FlippED
20-item Mathematics Specialization 1 LET Reviewer | FlippED20-item Mathematics Specialization 1 LET Reviewer | FlippED
20-item Mathematics Specialization 1 LET Reviewer | FlippED
Flipped Channel
 
20-item General Education Random LET Reviewers | FlippED
20-item General Education Random LET Reviewers | FlippED20-item General Education Random LET Reviewers | FlippED
20-item General Education Random LET Reviewers | FlippED
Flipped Channel
 
Mathematics in the Modern World - GE3 - Set Theory
Mathematics in the Modern World - GE3 - Set TheoryMathematics in the Modern World - GE3 - Set Theory
Mathematics in the Modern World - GE3 - Set Theory
Flipped Channel
 
History of Mathematics - Early to Present Period
History of Mathematics - Early to Present PeriodHistory of Mathematics - Early to Present Period
History of Mathematics - Early to Present Period
Flipped Channel
 
Measures of Position - Elementary Statistics
Measures of Position - Elementary StatisticsMeasures of Position - Elementary Statistics
Measures of Position - Elementary Statistics
Flipped Channel
 
Adding and Subtracting Integers
Adding  and Subtracting IntegersAdding  and Subtracting Integers
Adding and Subtracting Integers
Flipped Channel
 
Typology of learners with special need Part 2
Typology of learners with special need Part 2Typology of learners with special need Part 2
Typology of learners with special need Part 2
Flipped Channel
 
Typology of learners with special need part 1
Typology of learners with special need part 1Typology of learners with special need part 1
Typology of learners with special need part 1
Flipped Channel
 
Philosophical, historical &amp; sociological bases of special and inclusive e...
Philosophical, historical &amp; sociological bases of special and inclusive e...Philosophical, historical &amp; sociological bases of special and inclusive e...
Philosophical, historical &amp; sociological bases of special and inclusive e...
Flipped Channel
 
Legal bases of special and inclusive education
Legal bases of special and inclusive educationLegal bases of special and inclusive education
Legal bases of special and inclusive education
Flipped Channel
 
Public speaking in society
Public speaking in societyPublic speaking in society
Public speaking in society
Flipped Channel
 
Speech and Communication
Speech and CommunicationSpeech and Communication
Speech and Communication
Flipped Channel
 
Lesson planning Dos and Donts
Lesson planning Dos and DontsLesson planning Dos and Donts
Lesson planning Dos and Donts
Flipped Channel
 
Ad

Recently uploaded (20)

How to Configure Scheduled Actions in odoo 18
How to Configure Scheduled Actions in odoo 18How to Configure Scheduled Actions in odoo 18
How to Configure Scheduled Actions in odoo 18
Celine George
 
Biophysics Chapter 3 Methods of Studying Macromolecules.pdf
Biophysics Chapter 3 Methods of Studying Macromolecules.pdfBiophysics Chapter 3 Methods of Studying Macromolecules.pdf
Biophysics Chapter 3 Methods of Studying Macromolecules.pdf
PKLI-Institute of Nursing and Allied Health Sciences Lahore , Pakistan.
 
03#UNTAGGED. Generosity in architecture.
03#UNTAGGED. Generosity in architecture.03#UNTAGGED. Generosity in architecture.
03#UNTAGGED. Generosity in architecture.
MCH
 
How to Manage Upselling in Odoo 18 Sales
How to Manage Upselling in Odoo 18 SalesHow to Manage Upselling in Odoo 18 Sales
How to Manage Upselling in Odoo 18 Sales
Celine George
 
Rock Art As a Source of Ancient Indian History
Rock Art As a Source of Ancient Indian HistoryRock Art As a Source of Ancient Indian History
Rock Art As a Source of Ancient Indian History
Virag Sontakke
 
Ancient Stone Sculptures of India: As a Source of Indian History
Ancient Stone Sculptures of India: As a Source of Indian HistoryAncient Stone Sculptures of India: As a Source of Indian History
Ancient Stone Sculptures of India: As a Source of Indian History
Virag Sontakke
 
Cultivation Practice of Garlic in Nepal.pptx
Cultivation Practice of Garlic in Nepal.pptxCultivation Practice of Garlic in Nepal.pptx
Cultivation Practice of Garlic in Nepal.pptx
UmeshTimilsina1
 
Exercise Physiology MCQS By DR. NASIR MUSTAFA
Exercise Physiology MCQS By DR. NASIR MUSTAFAExercise Physiology MCQS By DR. NASIR MUSTAFA
Exercise Physiology MCQS By DR. NASIR MUSTAFA
Dr. Nasir Mustafa
 
Drugs in Anaesthesia and Intensive Care,.pdf
Drugs in Anaesthesia and Intensive Care,.pdfDrugs in Anaesthesia and Intensive Care,.pdf
Drugs in Anaesthesia and Intensive Care,.pdf
crewot855
 
YSPH VMOC Special Report - Measles Outbreak Southwest US 5-3-2025.pptx
YSPH VMOC Special Report - Measles Outbreak  Southwest US 5-3-2025.pptxYSPH VMOC Special Report - Measles Outbreak  Southwest US 5-3-2025.pptx
YSPH VMOC Special Report - Measles Outbreak Southwest US 5-3-2025.pptx
Yale School of Public Health - The Virtual Medical Operations Center (VMOC)
 
Lecture 4 INSECT CUTICLE and moulting.pptx
Lecture 4 INSECT CUTICLE and moulting.pptxLecture 4 INSECT CUTICLE and moulting.pptx
Lecture 4 INSECT CUTICLE and moulting.pptx
Arshad Shaikh
 
APGAR SCORE BY sweety Tamanna Mahapatra MSc Pediatric
APGAR SCORE  BY sweety Tamanna Mahapatra MSc PediatricAPGAR SCORE  BY sweety Tamanna Mahapatra MSc Pediatric
APGAR SCORE BY sweety Tamanna Mahapatra MSc Pediatric
SweetytamannaMohapat
 
Grade 3 - English - Printable Worksheet (PDF Format)
Grade 3 - English - Printable Worksheet  (PDF Format)Grade 3 - English - Printable Worksheet  (PDF Format)
Grade 3 - English - Printable Worksheet (PDF Format)
Sritoma Majumder
 
Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...
Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...
Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...
TechSoup
 
Form View Attributes in Odoo 18 - Odoo Slides
Form View Attributes in Odoo 18 - Odoo SlidesForm View Attributes in Odoo 18 - Odoo Slides
Form View Attributes in Odoo 18 - Odoo Slides
Celine George
 
Rococo versus Neoclassicism. The artistic styles of the 18th century
Rococo versus Neoclassicism. The artistic styles of the 18th centuryRococo versus Neoclassicism. The artistic styles of the 18th century
Rococo versus Neoclassicism. The artistic styles of the 18th century
Gema
 
Bridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast Brooklyn
Bridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast BrooklynBridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast Brooklyn
Bridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast Brooklyn
i4jd41bk
 
Ajanta Paintings: Study as a Source of History
Ajanta Paintings: Study as a Source of HistoryAjanta Paintings: Study as a Source of History
Ajanta Paintings: Study as a Source of History
Virag Sontakke
 
Herbs Used in Cosmetic Formulations .pptx
Herbs Used in Cosmetic Formulations .pptxHerbs Used in Cosmetic Formulations .pptx
Herbs Used in Cosmetic Formulations .pptx
RAJU THENGE
 
All About the 990 Unlocking Its Mysteries and Its Power.pdf
All About the 990 Unlocking Its Mysteries and Its Power.pdfAll About the 990 Unlocking Its Mysteries and Its Power.pdf
All About the 990 Unlocking Its Mysteries and Its Power.pdf
TechSoup
 
How to Configure Scheduled Actions in odoo 18
How to Configure Scheduled Actions in odoo 18How to Configure Scheduled Actions in odoo 18
How to Configure Scheduled Actions in odoo 18
Celine George
 
03#UNTAGGED. Generosity in architecture.
03#UNTAGGED. Generosity in architecture.03#UNTAGGED. Generosity in architecture.
03#UNTAGGED. Generosity in architecture.
MCH
 
How to Manage Upselling in Odoo 18 Sales
How to Manage Upselling in Odoo 18 SalesHow to Manage Upselling in Odoo 18 Sales
How to Manage Upselling in Odoo 18 Sales
Celine George
 
Rock Art As a Source of Ancient Indian History
Rock Art As a Source of Ancient Indian HistoryRock Art As a Source of Ancient Indian History
Rock Art As a Source of Ancient Indian History
Virag Sontakke
 
Ancient Stone Sculptures of India: As a Source of Indian History
Ancient Stone Sculptures of India: As a Source of Indian HistoryAncient Stone Sculptures of India: As a Source of Indian History
Ancient Stone Sculptures of India: As a Source of Indian History
Virag Sontakke
 
Cultivation Practice of Garlic in Nepal.pptx
Cultivation Practice of Garlic in Nepal.pptxCultivation Practice of Garlic in Nepal.pptx
Cultivation Practice of Garlic in Nepal.pptx
UmeshTimilsina1
 
Exercise Physiology MCQS By DR. NASIR MUSTAFA
Exercise Physiology MCQS By DR. NASIR MUSTAFAExercise Physiology MCQS By DR. NASIR MUSTAFA
Exercise Physiology MCQS By DR. NASIR MUSTAFA
Dr. Nasir Mustafa
 
Drugs in Anaesthesia and Intensive Care,.pdf
Drugs in Anaesthesia and Intensive Care,.pdfDrugs in Anaesthesia and Intensive Care,.pdf
Drugs in Anaesthesia and Intensive Care,.pdf
crewot855
 
Lecture 4 INSECT CUTICLE and moulting.pptx
Lecture 4 INSECT CUTICLE and moulting.pptxLecture 4 INSECT CUTICLE and moulting.pptx
Lecture 4 INSECT CUTICLE and moulting.pptx
Arshad Shaikh
 
APGAR SCORE BY sweety Tamanna Mahapatra MSc Pediatric
APGAR SCORE  BY sweety Tamanna Mahapatra MSc PediatricAPGAR SCORE  BY sweety Tamanna Mahapatra MSc Pediatric
APGAR SCORE BY sweety Tamanna Mahapatra MSc Pediatric
SweetytamannaMohapat
 
Grade 3 - English - Printable Worksheet (PDF Format)
Grade 3 - English - Printable Worksheet  (PDF Format)Grade 3 - English - Printable Worksheet  (PDF Format)
Grade 3 - English - Printable Worksheet (PDF Format)
Sritoma Majumder
 
Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...
Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...
Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...
TechSoup
 
Form View Attributes in Odoo 18 - Odoo Slides
Form View Attributes in Odoo 18 - Odoo SlidesForm View Attributes in Odoo 18 - Odoo Slides
Form View Attributes in Odoo 18 - Odoo Slides
Celine George
 
Rococo versus Neoclassicism. The artistic styles of the 18th century
Rococo versus Neoclassicism. The artistic styles of the 18th centuryRococo versus Neoclassicism. The artistic styles of the 18th century
Rococo versus Neoclassicism. The artistic styles of the 18th century
Gema
 
Bridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast Brooklyn
Bridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast BrooklynBridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast Brooklyn
Bridging the Transit Gap: Equity Drive Feeder Bus Design for Southeast Brooklyn
i4jd41bk
 
Ajanta Paintings: Study as a Source of History
Ajanta Paintings: Study as a Source of HistoryAjanta Paintings: Study as a Source of History
Ajanta Paintings: Study as a Source of History
Virag Sontakke
 
Herbs Used in Cosmetic Formulations .pptx
Herbs Used in Cosmetic Formulations .pptxHerbs Used in Cosmetic Formulations .pptx
Herbs Used in Cosmetic Formulations .pptx
RAJU THENGE
 
All About the 990 Unlocking Its Mysteries and Its Power.pdf
All About the 990 Unlocking Its Mysteries and Its Power.pdfAll About the 990 Unlocking Its Mysteries and Its Power.pdf
All About the 990 Unlocking Its Mysteries and Its Power.pdf
TechSoup
 

Meaning and Importance of Statistics

  • 1. Lesson 1 MEANING AND IMPORTANCE OF STATISTICS
  • 2. OBJECTIVES: After the successful discussion in class, you will be able to:  Define statistics and discuss the history of statistics;  Understand the terms related to statistics; and  Differentiate the two branches of Statistics.
  • 3. STATISTICS  It is imperative that every Filipino student have a clear understanding of the nature and definition of Statistics as a field of discipline. However, understanding the nature of statistics requires the students to go beyond its definition and appreciate its application.
  • 4. Definitions of Statistics  Plural Sense: Statistics pertains to numerical data or figures that can be presented and counted out of observations done by individual.  Singular Sense: Statistics is a branch of science that deals with the collection, tabulation and presentation. Analysis and interpretation of the data that can be used when making decisions in the face of uncertainty.
  • 5. HISTORY OF STATISTICS  Simple forms of statistics have been used to record numbers of people, animals, and inanimate objects on skins, slabs, or sticks of wood and the walls of caves.  Before 3000 B.C., Babylonians small clay tablets  The Egyptians analyzed the population and material wealth of their country before building a pyramid.
  • 6.  Aside from secular records, Statistics could be seen in Biblical accounts such as the one recorded in numbers 31:25-41 when, during the times of Moses, statistics were gathered for purposes such as taxation, military service and priestly duties.  Statistics has evolved from the word “Statistik” which was popularized by a German political scientist Gottfried Achenwall. The word was derived from Latin word “Status” or the Italian word “Statista” which means “State”. Its English use was introduced early in the 19th Century by Sir John Sinclair to mean “the collection and classification of data”.
  • 7. SIGNIFICANCE OF STATISTICS  Good decisions are driven by data. Proper evaluation and interpretation of these data could be useful in making the best decision for practicality every facet of man’s daily activities.
  • 8. Significance of Statistics in the ff. areas:  Society  Business and Industry  Transportation Safety  Peace and Order  Sports  Consumers  Health  Agriculture
  • 9. AREAS OF STATISTICS  Descriptive Statistics  Is the discipline of quantitatively describing main features of a collection of data without drawing conclusions about a large group. Descriptive statistics can be thought of as a straightforward presentation of facts.   Inferential Statistics  Concerned with the analysis of a subset of data or sample leading to predictions or inferences about the entire set of data or population. Some examples shows the analysis of the samples are generalized for the large population that the sample represents.
  • 10. Figure 1.1 Age-Sex Population Pyramid Philippines: 2010
  • 12. Lesson 2 TERMS AND SYMBOLS USED IN STATISTICS
  • 13. OBJECTIVES: After the successful discussion in class, you will be able to:  Understand the terms related to statistics;  Identify the different categories and types of variables;  Differentiate population from a sample;  Distinguish parametric test from non- parametric test; and  Familiarize the different statistical symbols used in this book.
  • 14. VARIABLES  Figures or any characteristics, numbers, or quantity that can be measured or counted and varies over time and on different individual or object under consideration. Arrows are used to illustrate relationships among variables.
  • 15. Types of variables  1. Independent Variable – experimental or predictor  2. Dependent Variable – outcome that is presumed effect  3. Extraneous Variables – interferes or interacts with IV
  • 16. Classification of Variables  Can be categorize according to the manner of measurement and presentation.   1. Qualitative Variable – categorical variable. It describes the qualities or characteristics of the samples   2. Quantitative Variable – give numerical responses representing an amount or number of something.   3. Discrete Quantitative Variable – countable variable. It assumes fixed or countable values of something being measured.   4. Continuous Quantitative Variable –non countable variable. It cannot take on finite values but the values are associated with points on an interval of the real line.
  • 18. STATISTICAL TERMS  Measurement – is the process done by individual to determine the value or label of the variable based on what has been observed.  Observation – is defined as the realized value of the variable  Population – is the collection of things or observational units under consideration. It is an aggregate set of individuals with varied characteristics and could be classify according to age and sex.
  • 19. Three (3) Factors Influencing Population  1. Fertility – this pertains to the birth rate in a community  2. Mortality – this is the death rate in a community  3. Migration – this is the number of people moving in and out of a community.  The Statistical Population is the set of all possible values of the variable.
  • 20.  POPULATION– changes in population and its structure significantly affects policy making and the development of a certain community.  SAMPLE – commonly defined as the subset of population that shares the same characteristics of the population  SAMPLING – process of selecting a part or subset of a population. You can use your sample to make inferences for your population.
  • 21. Common Reasons for Sampling  Limited budget, time constraints, lack of manpower, accessibility, peace and order of the area, size of the population, and availability and cost of the experimental materials.
  • 22. Types of Sampling Techniques  Probability Sampling It is the one in which each sample has the same probability of being chosen.  Non-Probability Sampling In this type of population sampling, members of the population do not have equal chance of being selected.  No rule sampling We take sample without any rule
  • 23. Types of Probability Sampling  Random Sampling  Systematic Sampling  Stratified Sampling  A. Proportionate Stratified Random Sampling  B. Disproportionate Stratified Random Sampling  Cluster Sampling
  • 24. Types of Non-Probability Sampling  Convenience Sampling  Sequential Sampling  Quota Sampling  Judgmental/ Purposive Sampling  Snowball Sampling
  • 25.  Information is limited to useful facts that an analyst or a decision maker can use in solving problems.   Parameter is a set of numerical figures describing the characteristic of the population.   Data mining is simply the process of examining or going to the details of the data. Important details are carefully studied and scrutinized.   Sex is the biological description of a person either a male or a female.   Operational Definition is how you define the word/s according to its use and purpose.
  • 26. KINDS OF STATISTICAL TEST  1. PARAMETRIC TEST  Requires normality of the distribution and the levels of measurement should be either interval or ratio. The observations must be independent and the populations must have the same variances.  It implies that parametric tests are more efficient than its non-parametric tests counterpart  Parametric tests are more appropriate when sample sizes are small.
  • 27. KINDS OF PARAMETRIC TEST  1. T-test  2. Z-test  3. F-test  4. Analysis of Variance  5. Pearson Product Moment Coefficient of Correlation  6. Simple Linear Regression  7. Multiple Regression Analysis
  • 28.  2. NON-PARAMETRIC TEST  Does not require normality of the distribution and the levels of measurement must be either interval ordinal.
  • 29. STATISTICAL SYMBOLS  ∑  N Xm  n i  F X  <F Md  >F X  Cs Y  SD R  S² R²  CD
  • 30. Lesson 3 LEVELS OF MEASUREMENT
  • 31. OBJECTIVES: After the successful discussion in class, you will be able to:  Define and distinguish nominal, ordinal, interval, and ratio scales;  Enumerate the limitations of each scale;  Apply measurement scales in choosing statistical tools; and  Give examples of errors that can be made by having inadequate understanding on the proper use of measurement scales.
  • 32.  Variables are considered the substance of statistics. Before we can conduct statistical investigation and analysis, we need first to fully understand the nature and measurements of the variables to be studied.  The in-depth understanding of your variables may result to correct and usable inferences or conclusions.  When we choose our statistical tools to be used in studying our variables, we need to consider the four measurement scales. For parametric test, the measurement scales should be either interval or ratio, and for non-parametric test, the measurement scales should be either nominal or ordinal.
  • 33. FOUR LEVELS OF MEASUREMENT SCALES  NOMINAL LEVEL  ORDINAL LEVEL  INTERVAL LEVEL  RATIO LEVEL
  • 34. Lesson 4 Data Collection and Presentation
  • 35. Data Collection Presentation  Data can be defined as groups of information that represent the qualitative or quantitative attributes of a variable or set of variables, which is the same as saying that data can be any set of information that describes a given entry. Data in statistics can be classified into grouped data and ungrouped data.
  • 36. Ungrouped Data  Any data that you first gathered and is the data in the raw. An example of ungrouped data is any list of numbers that you can think of.  Example:  The marks obtained by 20 students in class in a certain examination are given below:  21, 23, 19, 17, 12, 15, 15, 17, 17, 19, 23, 23, 21, 23, 25, 25, 21, 19, 19, 19
  • 37. Array  An arrangement of ungrouped data in ascending or descending order of magnitude is called an array.  Example:  The marks obtained by 20 students in class in a certain examination are given below:  21, 23, 19, 17, 12, 15, 15, 17, 17, 19, 23, 23, 21, 23, 25, 25, 21, 19, 19, 19  (Arrange the scores in ascending order)
  • 38. Frequency Distribution Table or Frequency Chart  A frequency is the number of times a data value occurs. For example, if ten students score 80 in Statistics, then the score of 80 has a frequency of 10. Frequency is often represented by letter f.  A Frequency Chart is made by arranging data values in ascending order of magnitude along with their frequencies.
  • 39. Example:  We take each observation from the data, one at a time, and indicate the frequency (the number of times the observation has occurred in the data) by small line, called tally marks. For convenience we write tally marks in bunches of five, the fifth one crossing the fourth diagonally. In the table so formed, the sum of all the frequency is equal to the total number of observations in the given data. Marks Tally Marks Frequency
  • 40. Grouped Data  Is data that has been organized into groups known as classes.  Grouped data has been ‘classified’ and thus some level of data analysis has taken place, which means that the data is no longer raw.
  • 41.  When the set of data values are spread out, it is difficult to set up a frequency table for every data value as there will be too many rows table. So we group the data into class intervals (or groups) to help us organize, interpret and analyze the data.  Each class is bounded by two figures, which are called class limits. The figure on the left side of a class is called its lower limit and that on its right is called its upper limit.  Ideally, we should have between five and ten rows in a frequency table. Bear this in mind when deciding the size of the class interval (or group).
  • 42. TYPES OF GROUPED FREQUENCY DISTRIBUTION  1. Exclusive form (or Continuous Interval Form): A frequency distribution in which the upper limit of each class is excluded and lower limit is included is called an exclusive form.
  • 43.  2. Inclusive Form (or Discontinuous Interval Form): A frequency distribution in which upper limit as well as lower limit is included is called an inclusive form.
  • 44. Calculating Class Interval  Given a set of raw or ungrouped data, how would you group that data into suitable classes that are easy to work with and at the same time meaningful?  The first step is to determine how many classes you want to have. Next, you subtract the lowest value in the data set from the highest value in the data set and then you divide by the number of classes that you want to have.
  • 46. The general rules for constructing a frequency distribution are:  There should not be too few or too many classes  Insofar as possible, equal class intervals are preferred. But the first and last classes can be open-ended to cater for extreme values.  Each class should have a class mark to represent the classes. It is also named as the class midpoint of the ith class. It can be found by taking simple average of the class boundaries or the class limits of the same class.
  • 47. Example:  Group the following raw data into ten classes.  An array of the marks of 25 students in ascending order.  8, 10, 11, 12, 14, 16, 16, 16, 20, 24, 25, 25, 25, 29, 30, 33, 35, 36, 37, 40, 40, 42, 45, 45, 48.
  • 48. GRAPHICAL METHODS  Frequency distributions and are usually illustrated graphically by plotting various types of graphs: 1. Bar Graph - A bar graph is a way of summarizing a set of categorical data. It displays the data using a number of rectangles, of the same width, each of which represents a particular category. Bar graphs can be displayed horizontally or vertically and they are usually drawn with gap between the bars
  • 49. GRAPHICAL METHODS 2. Histogram - A histogram is a way of summarizing data that are measured on an interval scale (either discrete or continuous). It is often used in exploratory data analysis to illustrate the features of the distribution of the data in a convenient form.
  • 50. GRAPHICAL METHODS 3. Pie Chart - A pie chart is used to display a set of categorical data. It is a circle, which is divided into segments. Each segment represents a particular category. The area of each segment is proportional to the number of cases in that category.
  • 51. GRAPHICAL METHODS 4. Line Graph - A line graph is particularly useful when we want to show the trend of a variable over time. Time is displayed on the horizontal axis (x-axis) and the variable is displayed on the vertical axis (y-axis).
  • 52. Did you like this Powerpoint presentation? • We offer some educational services like: - Powerpoint presentation maker - Proof-reader - Content creator - Layout designer • If you are interested, kindly contact us at flippedchannel27@gmail.com • For content videos, subscribe to our youtube channel: FlippED Channel