SlideShare a Scribd company logo
GOALS 
1. Organize qualitative data into a frequency table. 
2. Present a frequency table as a bar chart or a pie 
chart. 
3. Organize quantitative data into a frequency 
distribution. 
4. Present a frequency distribution for quantitative 
data using histograms, frequency polygons, and 
cumulative frequency polygons. 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-1
Tabulating Numerical Data: 
Frequency Distributions 
What is a Frequency Distribution? 
 A frequency distribution is a list or a table … 
 containing class groupings (ranges within which 
the data fall) ... 
 and the corresponding frequencies with which 
data fall within each grouping or category 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-2
Why Use a Frequency Distribution? 
 It is a way to summarize numerical data 
 It condenses the raw data into a more 
useful form... 
 It allows for a quick visual interpretation of 
the data 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-3
Class Intervals 
and Class Boundaries 
 Each class grouping has the same width 
 Determine the width of each interval by 
Width of interval @ range 
number of desired class groupings 
 Usually at least 5 but no more than 15 
groupings 
 Class boundaries never overlap 
 Round up the interval width to get desirable 
endpoints 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-4
EExxaammppllee:: HHoonnddaa AAuuttoo RReeppaaiirr 
TThhee mmaannaaggeerr ooff HHoonnddaa AAuuttoo 
wwoouulldd lliikkee ttoo hhaavvee aa bbeetttteerr 
uunnddeerrssttaannddiinngg ooff tthhee ccoosstt 
ooff ppaarrttss uusseedd iinn tthhee eennggiinnee 
ttuunnee--uuppss ppeerrffoorrmmeedd iinn tthhee 
sshhoopp.. SShhee eexxaammiinneess 5500 
ccuussttoommeerr iinnvvooiicceess ffoorr ttuunnee--uuppss.. TThhee ccoossttss ooff ppaarrttss,, 
rroouunnddeedd ttoo tthhee nneeaarreesstt ddoollllaarr,, aarree lliisstteedd oonn tthhee nneexxtt 
sslliiddee.. 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-5
EExxaammppllee:: HHoonnddaa AAuuttoo RReeppaaiirr 
 SSaammppllee ooff PPaarrttss CCoosstt ffoorr 5500 TTuunnee--uuppss 
91 78 93 57 75 52 99 80 97 62 
71 69 72 89 66 75 79 75 72 76 
104 74 62 68 97 105 77 65 80 109 
85 97 88 68 83 68 71 69 67 74 
62 82 98 101 79 105 79 69 62 73 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-6
Tabular Summary: 
Frequency and Percent Frequency 
PPaarrttss 
CCoosstt (($$)) 
5500--5599 
6600--6699 
7700--7799 
8800--8899 
9900--9999 
110000--110099 
PPaarrttss 
FFrreeqquueennccyy 
22 
1133 
1166 
77 
77 
55 
5500 
PPeerrcceenntt 
FFrreeqquueennccyy 
44 
2266 
3322 
1144 
1144 
1100 
110000 
((22/5500))110000 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-7
Graphical Summary: Histogram 
18 
16 
14 
12 
10 
8 
6 
4 
2 
Parts 
Cost ($) 
Frequency 
50-59 60-69 70-79 80-89 90-99 100-110 
TTuunnee--uupp PPaarrttss CCoosstt 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-8
Histogram (Continued) 
 Symmetric 
 Left tail is the mirror image of the right tail 
 Example: heights and weights of people 
Relative Frequency 
.35 
.30 
.25 
.20 
.15 
.10 
.05 
0 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-9
Histogram (Continued) 
 Moderately Skewed Left 
 A longer tail to the left 
 Example: exam scores 
Relative Frequency 
.35 
.30 
.25 
.20 
.15 
.10 
.05 
0 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-10
Histogram (Continued) 
 Moderately Right Skewed 
 A Longer tail to the right 
 Example: housing values 
Relative Frequency 
.35 
.30 
.25 
.20 
.15 
.10 
.05 
0 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-11
Histogram (Continued) 
 Highly Skewed Right 
 A very long tail to the right 
 Example: .35 
executive salaries 
.30 
Relative Frequency .05 
.25 
.20 
.15 
.10 
0 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-12
Frequency Distribution Example 
Example: A manufacturer of insulation randomly 
selects 20 winter days and records the daily 
high temperature 
24, 35, 17, 21, 24, 37, 26, 46, 58, 30, 
32, 13, 12, 38, 41, 43, 44, 27, 53, 27 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-13
Frequency Distribution Example 
(continued) 
 Sort raw data in ascending order: 
12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58 
 Find range: 58 - 12 = 46 
 Select number of classes: 5 (usually between 5 and 15) 
 Compute class interval (width): 10 (46/5 then round up) 
 Determine class boundaries (limits): 10, 20, 30, 40, 50, 60 
 Compute class midpoints: 15, 25, 35, 45, 55 
 Count observations  assign to classes 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-14
Frequency Distribution Example 
Data in ordered array: 
(continued) 
12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58 
Relative 
Frequency Percentage 
Class Frequency 
10 but less than 20 3 .15 15 
20 but less than 30 6 .30 30 
30 but less than 40 5 .25 25 
40 but less than 50 4 .20 20 
50 but less than 60 2 .10 10 
Total 20 1.00 100 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-15
Tabulating Numerical Data: 
Cumulative Frequency 
12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58 
Class 
Data in ordered array: 
Frequency Cumulative 
Percentage Cumulative 
Percentage 
Frequency 
10 but less than 20 3 15 3 15 
20 but less than 30 6 30 9 45 
30 but less than 40 5 25 14 70 
40 but less than 50 4 20 18 90 
50 but less than 60 2 10 20 100 
Total 20 100 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-16
Graphing Numerical Data: 
The Histogram 
 A graph of the data in a frequency distribution 
is called a histogram 
 The class boundaries (or class midpoints) 
are shown on the horizontal axis 
 the vertical axis is either frequency, relative 
frequency, or percentage 
 Bars of the appropriate heights are used to 
represent the number of observations within 
each class 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-17
Histogram Example 
Histogram: Daily High Temperature 
7 
6 
5 
4 
3 
2 
1 
0 
5 15 25 35 45 55 65 
Frequency 
Frequency 
Class Midpoints 
Class 
Midpoint 
10 but less than 20 15 3 
20 but less than 30 25 6 
30 but less than 40 35 5 
40 but less than 50 45 4 
50 but less than 60 55 2 
(No gaps 
between 
bars) 
Class 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-18
Graphing Numerical Data: 
The Frequency Polygon 
Frequency Polygon: Daily High Temperature 
7 
6 
5 
4 
3 
2 
1 
0 
5 15 25 35 45 55 65 
Frequency 
Class Midpoints 
Class 
Frequency 
Class 
Midpoint 
10 but less than 20 15 3 
20 but less than 30 25 6 
30 but less than 40 35 5 
40 but less than 50 45 4 
50 but less than 60 55 2 
(In a percentage 
polygon the vertical axis 
would be defined to 
show the percentage of 
observations per class) 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-19
Graphing Cumulative Frequencies: 
The Ogive (Cumulative % Polygon) 
Ogive: Daily High Temperature 
100 
80 
60 
40 
20 
0 
10 20 30 40 50 60 
Cumulative Percentage 
Class Boundaries (Not Midpoints) 
Class 
Cumulative 
Percentage 
Lower 
class 
boundary 
Less than 10 0 0 
10 but less than 20 10 15 
20 but less than 30 20 45 
30 but less than 40 30 70 
40 but less than 50 40 90 
50 but less than 60 50 100 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-20
Categorical Data 
  Categorical data involves categories or 
 groups. 
  These can be made without the fear of 
 their order to be disturbed 
 i.e. sex, age, marital status. 
  It covers the following topics: 
 Frequency Distribution 
 Graphs 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-21
Example: Marada Inn 
Guests staying at Marada Inn were 
asked to rate the quality of their 
accommodations as being excellent, 
above average, average, below average, or 
poor. The ratings provided by a sample of 20 guests are: 
BBeellooww AAvveerraaggee 
AAbboovvee AAvveerraaggee 
AAbboovvee AAvveerraaggee 
AAvveerraaggee 
AAbboovvee AAvveerraaggee 
AAvveerraaggee 
AAbboovvee AAvveerraaggee 
AAvveerraaggee 
AAbboovvee AAvveerraaggee 
BBeellooww AAvveerraaggee 
PPoooorr 
EExxcceelllleenntt 
AAbboovvee AAvveerraaggee 
AAvveerraaggee 
AAbboovvee AAvveerraaggee 
AAbboovvee AAvveerraaggee 
BBeellooww AAvveerraaggee 
PPoooorr 
AAbboovvee AAvveerraaggee 
AAvveerraaggee 
AAvveerraaggee 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-22
FFrreeqquueennccyy DDiissttrriibbuuttiioonn 
RRaattiinngg FFrreeqquueennccyy 
PPoooorr 
BBeellooww AAvveerraaggee 
AAvveerraaggee 
AAbboovvee AAvveerraaggee 
EExxcceelllleenntt 
22 
33 
55 
99 
11 
TToottaall 2200 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-23
BBaarr GGrraapphh 
10 
9 
8 
7 
MMaarraaddaa IInnnn QQuuaalliittyy RRaattiinnggss 
Excellent Frequency 
Poor Below 
Average 
Average Above 
Average 
Rating 
6 
5 
4 
3 
2 
1 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-24
PPeerrcceennttaaggee FFrreeqquueennccyy DDiissttrriibbuuttiioonn 
RRaattiinngg PPeerrcceennttaaggeess 
PPoooorr 
BBeellooww AAvveerraaggee 
AAvveerraaggee 
AAbboovvee AAvveerraaggee 
EExxcceelllleenntt 
1100 
1155 
2255 
4455 
55 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-25
PPiiee CChhaarrtt 
MMMMaaaarrrraaaaddddaaaa IIIInnnnnnnn QQQQuuuuaaaalllliiiittttyyyy RRRRaaaattttiiiinnnnggggssss 
Poor 
10% 
Below 
Average 
15% 
Average 
25% 
Excellent 
5% 
Above 
Average 
45% 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-26
PPeerrcceennttaaggee FFrreeqquueennccyy DDiissttrriibbuuttiioonn 
RRaattiinngg AAnngglleess 
PPoooorr 
BBeellooww AAvveerraaggee 
AAvveerraaggee 
AAbboovvee AAvveerraaggee 
EExxcceelllleenntt 
3366 
5544 
9900 
116622 
1188 
CCuummiillaattiivvee AAnngglleess 
3366 
9900 
118800 
334422 
336600 
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-27
Ad

More Related Content

Viewers also liked (20)

Bio statistics1
Bio statistics1Bio statistics1
Bio statistics1
Indian dental academy
 
Finding the Mean from Dot Plot
Finding the Mean from Dot PlotFinding the Mean from Dot Plot
Finding the Mean from Dot Plot
Moonie Kim
 
Biostatistics
BiostatisticsBiostatistics
Biostatistics
DrAmrita Rastogi
 
Statistical Writing. Tables and Figures (Sven Sandin)
Statistical Writing. Tables and Figures (Sven Sandin)Statistical Writing. Tables and Figures (Sven Sandin)
Statistical Writing. Tables and Figures (Sven Sandin)
kgr023
 
Dot plot
Dot plotDot plot
Dot plot
Erik Tjersland
 
2.3 stem and leaf displays
2.3 stem and leaf displays2.3 stem and leaf displays
2.3 stem and leaf displays
leblance
 
Scatter Plots
Scatter PlotsScatter Plots
Scatter Plots
Bitsy Griffin
 
Biostatistics
BiostatisticsBiostatistics
Biostatistics
Dr. Senthilvel Vasudevan
 
Finding Interquartile Range from Dot Plot 1
Finding Interquartile Range from Dot Plot 1Finding Interquartile Range from Dot Plot 1
Finding Interquartile Range from Dot Plot 1
Moonie Kim
 
Descriptive statistics
Descriptive statisticsDescriptive statistics
Descriptive statistics
Anand Thokal
 
biostatistics basic
biostatistics basic biostatistics basic
biostatistics basic
jjm medical college
 
Lecture 1 basic concepts2009
Lecture 1 basic concepts2009Lecture 1 basic concepts2009
Lecture 1 basic concepts2009
barath r baskaran
 
Chapter 04
Chapter 04Chapter 04
Chapter 04
bmcfad01
 
Tabulation
Tabulation Tabulation
Tabulation
Pranav Krishna
 
Stem and-leaf-diagram-ppt.-dfs
Stem and-leaf-diagram-ppt.-dfsStem and-leaf-diagram-ppt.-dfs
Stem and-leaf-diagram-ppt.-dfs
Farhana Shaheen
 
Types of graphs used in medicine
Types of graphs used in medicineTypes of graphs used in medicine
Types of graphs used in medicine
Samir Haffar
 
Fundamentals of biostatistics
Fundamentals of biostatisticsFundamentals of biostatistics
Fundamentals of biostatistics
Kingsuk Sarkar
 
Biostatistics
BiostatisticsBiostatistics
Biostatistics
priyarokz
 
INTRODUCTION TO BIO STATISTICS
INTRODUCTION TO BIO STATISTICS INTRODUCTION TO BIO STATISTICS
INTRODUCTION TO BIO STATISTICS
Meklelle university
 
Application of Biostatistics
Application of BiostatisticsApplication of Biostatistics
Application of Biostatistics
Jippy Jack
 
Finding the Mean from Dot Plot
Finding the Mean from Dot PlotFinding the Mean from Dot Plot
Finding the Mean from Dot Plot
Moonie Kim
 
Statistical Writing. Tables and Figures (Sven Sandin)
Statistical Writing. Tables and Figures (Sven Sandin)Statistical Writing. Tables and Figures (Sven Sandin)
Statistical Writing. Tables and Figures (Sven Sandin)
kgr023
 
2.3 stem and leaf displays
2.3 stem and leaf displays2.3 stem and leaf displays
2.3 stem and leaf displays
leblance
 
Finding Interquartile Range from Dot Plot 1
Finding Interquartile Range from Dot Plot 1Finding Interquartile Range from Dot Plot 1
Finding Interquartile Range from Dot Plot 1
Moonie Kim
 
Descriptive statistics
Descriptive statisticsDescriptive statistics
Descriptive statistics
Anand Thokal
 
Lecture 1 basic concepts2009
Lecture 1 basic concepts2009Lecture 1 basic concepts2009
Lecture 1 basic concepts2009
barath r baskaran
 
Chapter 04
Chapter 04Chapter 04
Chapter 04
bmcfad01
 
Stem and-leaf-diagram-ppt.-dfs
Stem and-leaf-diagram-ppt.-dfsStem and-leaf-diagram-ppt.-dfs
Stem and-leaf-diagram-ppt.-dfs
Farhana Shaheen
 
Types of graphs used in medicine
Types of graphs used in medicineTypes of graphs used in medicine
Types of graphs used in medicine
Samir Haffar
 
Fundamentals of biostatistics
Fundamentals of biostatisticsFundamentals of biostatistics
Fundamentals of biostatistics
Kingsuk Sarkar
 
Biostatistics
BiostatisticsBiostatistics
Biostatistics
priyarokz
 
Application of Biostatistics
Application of BiostatisticsApplication of Biostatistics
Application of Biostatistics
Jippy Jack
 

Similar to Statistics (20)

Basic business statistics 2
Basic business statistics 2Basic business statistics 2
Basic business statistics 2
Anwar Afridi
 
Newbold_chap02.ppt
Newbold_chap02.pptNewbold_chap02.ppt
Newbold_chap02.ppt
cfisicaster
 
Bbs11 ppt ch02
Bbs11 ppt ch02Bbs11 ppt ch02
Bbs11 ppt ch02
Tuul Tuul
 
UM20BB151 Business Stats - Consolidated.pptx
UM20BB151 Business Stats - Consolidated.pptxUM20BB151 Business Stats - Consolidated.pptx
UM20BB151 Business Stats - Consolidated.pptx
ChristopherDevakumar1
 
Presenting Data in Tables and Charts
Presenting Data in Tables and ChartsPresenting Data in Tables and Charts
Presenting Data in Tables and Charts
Yesica Adicondro
 
Applied Business Statistics ,ken black , ch 2
Applied Business Statistics ,ken black , ch 2Applied Business Statistics ,ken black , ch 2
Applied Business Statistics ,ken black , ch 2
AbdelmonsifFadl
 
Chap02 presenting data in chart & tables
Chap02 presenting data in chart & tablesChap02 presenting data in chart & tables
Chap02 presenting data in chart & tables
Uni Azza Aunillah
 
Chap02 presenting data in chart & tables
Chap02 presenting data in chart & tablesChap02 presenting data in chart & tables
Chap02 presenting data in chart & tables
Uni Azza Aunillah
 
Data collection and presentation
Data collection and presentationData collection and presentation
Data collection and presentation
ferdaus44
 
basic statistics introduction to statistics presentation of data.pptx
basic statistics introduction to statistics  presentation of data.pptxbasic statistics introduction to statistics  presentation of data.pptx
basic statistics introduction to statistics presentation of data.pptx
irfanalirazastat
 
Business Statistics Chapter 2
Business Statistics Chapter 2Business Statistics Chapter 2
Business Statistics Chapter 2
Lux PP
 
Chapter 2 of the book Basic Statistics as described by teacher
Chapter 2 of the book Basic Statistics as described by teacherChapter 2 of the book Basic Statistics as described by teacher
Chapter 2 of the book Basic Statistics as described by teacher
karamjit18
 
Lecture 3 Graphs.ppt
Lecture 3 Graphs.pptLecture 3 Graphs.ppt
Lecture 3 Graphs.ppt
ABCraftsman
 
LECTURE 2 STATISTICS for analytics and machine learning
LECTURE 2 STATISTICS for analytics and machine learningLECTURE 2 STATISTICS for analytics and machine learning
LECTURE 2 STATISTICS for analytics and machine learning
mbilalamir456
 
Aed1222 lesson 5
Aed1222 lesson 5Aed1222 lesson 5
Aed1222 lesson 5
nurun2010
 
(Forms of presentation of data)- Economics
(Forms of presentation of data)- Economics(Forms of presentation of data)- Economics
(Forms of presentation of data)- Economics
Monika Makhija
 
Ch02
Ch02Ch02
Ch02
Javedumrani Umrani
 
Lecture 1 - Overview.pptx
Lecture 1 - Overview.pptxLecture 1 - Overview.pptx
Lecture 1 - Overview.pptx
DrAnisFatima
 
PERTEMUAN-01-02 mengenai probabilitas statistika ekonomi dan umum.ppt
PERTEMUAN-01-02 mengenai probabilitas statistika ekonomi dan umum.pptPERTEMUAN-01-02 mengenai probabilitas statistika ekonomi dan umum.ppt
PERTEMUAN-01-02 mengenai probabilitas statistika ekonomi dan umum.ppt
BayuYakti1
 
Ee184405 statistika dan stokastik statistik deskriptif 1 grafik
Ee184405 statistika dan stokastik   statistik deskriptif 1 grafikEe184405 statistika dan stokastik   statistik deskriptif 1 grafik
Ee184405 statistika dan stokastik statistik deskriptif 1 grafik
yusufbf
 
Basic business statistics 2
Basic business statistics 2Basic business statistics 2
Basic business statistics 2
Anwar Afridi
 
Newbold_chap02.ppt
Newbold_chap02.pptNewbold_chap02.ppt
Newbold_chap02.ppt
cfisicaster
 
Bbs11 ppt ch02
Bbs11 ppt ch02Bbs11 ppt ch02
Bbs11 ppt ch02
Tuul Tuul
 
UM20BB151 Business Stats - Consolidated.pptx
UM20BB151 Business Stats - Consolidated.pptxUM20BB151 Business Stats - Consolidated.pptx
UM20BB151 Business Stats - Consolidated.pptx
ChristopherDevakumar1
 
Presenting Data in Tables and Charts
Presenting Data in Tables and ChartsPresenting Data in Tables and Charts
Presenting Data in Tables and Charts
Yesica Adicondro
 
Applied Business Statistics ,ken black , ch 2
Applied Business Statistics ,ken black , ch 2Applied Business Statistics ,ken black , ch 2
Applied Business Statistics ,ken black , ch 2
AbdelmonsifFadl
 
Chap02 presenting data in chart & tables
Chap02 presenting data in chart & tablesChap02 presenting data in chart & tables
Chap02 presenting data in chart & tables
Uni Azza Aunillah
 
Chap02 presenting data in chart & tables
Chap02 presenting data in chart & tablesChap02 presenting data in chart & tables
Chap02 presenting data in chart & tables
Uni Azza Aunillah
 
Data collection and presentation
Data collection and presentationData collection and presentation
Data collection and presentation
ferdaus44
 
basic statistics introduction to statistics presentation of data.pptx
basic statistics introduction to statistics  presentation of data.pptxbasic statistics introduction to statistics  presentation of data.pptx
basic statistics introduction to statistics presentation of data.pptx
irfanalirazastat
 
Business Statistics Chapter 2
Business Statistics Chapter 2Business Statistics Chapter 2
Business Statistics Chapter 2
Lux PP
 
Chapter 2 of the book Basic Statistics as described by teacher
Chapter 2 of the book Basic Statistics as described by teacherChapter 2 of the book Basic Statistics as described by teacher
Chapter 2 of the book Basic Statistics as described by teacher
karamjit18
 
Lecture 3 Graphs.ppt
Lecture 3 Graphs.pptLecture 3 Graphs.ppt
Lecture 3 Graphs.ppt
ABCraftsman
 
LECTURE 2 STATISTICS for analytics and machine learning
LECTURE 2 STATISTICS for analytics and machine learningLECTURE 2 STATISTICS for analytics and machine learning
LECTURE 2 STATISTICS for analytics and machine learning
mbilalamir456
 
Aed1222 lesson 5
Aed1222 lesson 5Aed1222 lesson 5
Aed1222 lesson 5
nurun2010
 
(Forms of presentation of data)- Economics
(Forms of presentation of data)- Economics(Forms of presentation of data)- Economics
(Forms of presentation of data)- Economics
Monika Makhija
 
Lecture 1 - Overview.pptx
Lecture 1 - Overview.pptxLecture 1 - Overview.pptx
Lecture 1 - Overview.pptx
DrAnisFatima
 
PERTEMUAN-01-02 mengenai probabilitas statistika ekonomi dan umum.ppt
PERTEMUAN-01-02 mengenai probabilitas statistika ekonomi dan umum.pptPERTEMUAN-01-02 mengenai probabilitas statistika ekonomi dan umum.ppt
PERTEMUAN-01-02 mengenai probabilitas statistika ekonomi dan umum.ppt
BayuYakti1
 
Ee184405 statistika dan stokastik statistik deskriptif 1 grafik
Ee184405 statistika dan stokastik   statistik deskriptif 1 grafikEe184405 statistika dan stokastik   statistik deskriptif 1 grafik
Ee184405 statistika dan stokastik statistik deskriptif 1 grafik
yusufbf
 
Ad

More from Zahida Pervaiz (20)

coffee tea & company
coffee tea & company coffee tea & company
coffee tea & company
Zahida Pervaiz
 
International marketing analysis
International marketing analysisInternational marketing analysis
International marketing analysis
Zahida Pervaiz
 
learning Management system
learning Management systemlearning Management system
learning Management system
Zahida Pervaiz
 
Sunny vale foods inc
Sunny vale foods inc Sunny vale foods inc
Sunny vale foods inc
Zahida Pervaiz
 
Publisher topic 7
Publisher topic 7Publisher topic 7
Publisher topic 7
Zahida Pervaiz
 
1st lecture basics of visio
1st lecture  basics of visio1st lecture  basics of visio
1st lecture basics of visio
Zahida Pervaiz
 
2nd topic stencil and data linkage
2nd topic stencil and data linkage2nd topic stencil and data linkage
2nd topic stencil and data linkage
Zahida Pervaiz
 
3rd topic creating flowchart and calendar
3rd topic creating flowchart and calendar3rd topic creating flowchart and calendar
3rd topic creating flowchart and calendar
Zahida Pervaiz
 
Lecture no 6
Lecture no 6Lecture no 6
Lecture no 6
Zahida Pervaiz
 
Publisher lec 5
Publisher lec 5Publisher lec 5
Publisher lec 5
Zahida Pervaiz
 
Publisher lec 4
Publisher lec 4Publisher lec 4
Publisher lec 4
Zahida Pervaiz
 
Publisher lec 3
Publisher lec 3Publisher lec 3
Publisher lec 3
Zahida Pervaiz
 
Publisher lec 2
Publisher lec 2Publisher lec 2
Publisher lec 2
Zahida Pervaiz
 
Publisher topic 1
Publisher topic 1Publisher topic 1
Publisher topic 1
Zahida Pervaiz
 
5 random variables
5 random variables5 random variables
5 random variables
Zahida Pervaiz
 
Binomial distribution good
Binomial distribution goodBinomial distribution good
Binomial distribution good
Zahida Pervaiz
 
Probability theory good
Probability theory goodProbability theory good
Probability theory good
Zahida Pervaiz
 
after 20 years
after 20 yearsafter 20 years
after 20 years
Zahida Pervaiz
 
Review writing
Review writing Review writing
Review writing
Zahida Pervaiz
 
Tourism in pakistan
Tourism in pakistanTourism in pakistan
Tourism in pakistan
Zahida Pervaiz
 
Ad

Recently uploaded (20)

Collibra DQ Installation setup and debug
Collibra DQ Installation setup and debugCollibra DQ Installation setup and debug
Collibra DQ Installation setup and debug
karthikprince20
 
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
Taqyea
 
Process Mining at Rabobank - Organizational challenges
Process Mining at Rabobank - Organizational challengesProcess Mining at Rabobank - Organizational challenges
Process Mining at Rabobank - Organizational challenges
Process mining Evangelist
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
muhammed84essa
 
Customer Segmentation using K-Means clustering
Customer Segmentation using K-Means clusteringCustomer Segmentation using K-Means clustering
Customer Segmentation using K-Means clustering
Ingrid Nyakerario
 
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
Taqyea
 
717239550-Hotel-Management-Ppt-Final.pptx
717239550-Hotel-Management-Ppt-Final.pptx717239550-Hotel-Management-Ppt-Final.pptx
717239550-Hotel-Management-Ppt-Final.pptx
dharmendrasingh31102
 
Deloitte - A Framework for Process Mining Projects
Deloitte - A Framework for Process Mining ProjectsDeloitte - A Framework for Process Mining Projects
Deloitte - A Framework for Process Mining Projects
Process mining Evangelist
 
Automation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success storyAutomation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success story
Process mining Evangelist
 
4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf
axonneurologycenter1
 
L1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptxL1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptx
38NoopurPatel
 
hersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distributionhersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distribution
hershtara1
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
vMix Pro Crack + Serial Number Torrent free Download
vMix Pro Crack + Serial Number Torrent free DownloadvMix Pro Crack + Serial Number Torrent free Download
vMix Pro Crack + Serial Number Torrent free Download
eyeskye547
 
AWS Certified Machine Learning Slides.pdf
AWS Certified Machine Learning Slides.pdfAWS Certified Machine Learning Slides.pdf
AWS Certified Machine Learning Slides.pdf
philsparkshome
 
RAG Chatbot using AWS Bedrock and Streamlit Framework
RAG Chatbot using AWS Bedrock and Streamlit FrameworkRAG Chatbot using AWS Bedrock and Streamlit Framework
RAG Chatbot using AWS Bedrock and Streamlit Framework
apanneer
 
AWS-AIML-PRESENTATION RELATED TO DATA SCIENCE TO DATA
AWS-AIML-PRESENTATION RELATED TO DATA SCIENCE TO DATAAWS-AIML-PRESENTATION RELATED TO DATA SCIENCE TO DATA
AWS-AIML-PRESENTATION RELATED TO DATA SCIENCE TO DATA
SnehaBoja
 
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
disnakertransjabarda
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Collibra DQ Installation setup and debug
Collibra DQ Installation setup and debugCollibra DQ Installation setup and debug
Collibra DQ Installation setup and debug
karthikprince20
 
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
Taqyea
 
Process Mining at Rabobank - Organizational challenges
Process Mining at Rabobank - Organizational challengesProcess Mining at Rabobank - Organizational challenges
Process Mining at Rabobank - Organizational challenges
Process mining Evangelist
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
muhammed84essa
 
Customer Segmentation using K-Means clustering
Customer Segmentation using K-Means clusteringCustomer Segmentation using K-Means clustering
Customer Segmentation using K-Means clustering
Ingrid Nyakerario
 
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
Taqyea
 
717239550-Hotel-Management-Ppt-Final.pptx
717239550-Hotel-Management-Ppt-Final.pptx717239550-Hotel-Management-Ppt-Final.pptx
717239550-Hotel-Management-Ppt-Final.pptx
dharmendrasingh31102
 
Deloitte - A Framework for Process Mining Projects
Deloitte - A Framework for Process Mining ProjectsDeloitte - A Framework for Process Mining Projects
Deloitte - A Framework for Process Mining Projects
Process mining Evangelist
 
Automation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success storyAutomation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success story
Process mining Evangelist
 
4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf
axonneurologycenter1
 
L1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptxL1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptx
38NoopurPatel
 
hersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distributionhersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distribution
hershtara1
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
vMix Pro Crack + Serial Number Torrent free Download
vMix Pro Crack + Serial Number Torrent free DownloadvMix Pro Crack + Serial Number Torrent free Download
vMix Pro Crack + Serial Number Torrent free Download
eyeskye547
 
AWS Certified Machine Learning Slides.pdf
AWS Certified Machine Learning Slides.pdfAWS Certified Machine Learning Slides.pdf
AWS Certified Machine Learning Slides.pdf
philsparkshome
 
RAG Chatbot using AWS Bedrock and Streamlit Framework
RAG Chatbot using AWS Bedrock and Streamlit FrameworkRAG Chatbot using AWS Bedrock and Streamlit Framework
RAG Chatbot using AWS Bedrock and Streamlit Framework
apanneer
 
AWS-AIML-PRESENTATION RELATED TO DATA SCIENCE TO DATA
AWS-AIML-PRESENTATION RELATED TO DATA SCIENCE TO DATAAWS-AIML-PRESENTATION RELATED TO DATA SCIENCE TO DATA
AWS-AIML-PRESENTATION RELATED TO DATA SCIENCE TO DATA
SnehaBoja
 
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
disnakertransjabarda
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 

Statistics

  • 1. GOALS 1. Organize qualitative data into a frequency table. 2. Present a frequency table as a bar chart or a pie chart. 3. Organize quantitative data into a frequency distribution. 4. Present a frequency distribution for quantitative data using histograms, frequency polygons, and cumulative frequency polygons. Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-1
  • 2. Tabulating Numerical Data: Frequency Distributions What is a Frequency Distribution?  A frequency distribution is a list or a table …  containing class groupings (ranges within which the data fall) ...  and the corresponding frequencies with which data fall within each grouping or category Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-2
  • 3. Why Use a Frequency Distribution?  It is a way to summarize numerical data  It condenses the raw data into a more useful form...  It allows for a quick visual interpretation of the data Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-3
  • 4. Class Intervals and Class Boundaries  Each class grouping has the same width  Determine the width of each interval by Width of interval @ range number of desired class groupings  Usually at least 5 but no more than 15 groupings  Class boundaries never overlap  Round up the interval width to get desirable endpoints Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-4
  • 5. EExxaammppllee:: HHoonnddaa AAuuttoo RReeppaaiirr TThhee mmaannaaggeerr ooff HHoonnddaa AAuuttoo wwoouulldd lliikkee ttoo hhaavvee aa bbeetttteerr uunnddeerrssttaannddiinngg ooff tthhee ccoosstt ooff ppaarrttss uusseedd iinn tthhee eennggiinnee ttuunnee--uuppss ppeerrffoorrmmeedd iinn tthhee sshhoopp.. SShhee eexxaammiinneess 5500 ccuussttoommeerr iinnvvooiicceess ffoorr ttuunnee--uuppss.. TThhee ccoossttss ooff ppaarrttss,, rroouunnddeedd ttoo tthhee nneeaarreesstt ddoollllaarr,, aarree lliisstteedd oonn tthhee nneexxtt sslliiddee.. Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-5
  • 6. EExxaammppllee:: HHoonnddaa AAuuttoo RReeppaaiirr SSaammppllee ooff PPaarrttss CCoosstt ffoorr 5500 TTuunnee--uuppss 91 78 93 57 75 52 99 80 97 62 71 69 72 89 66 75 79 75 72 76 104 74 62 68 97 105 77 65 80 109 85 97 88 68 83 68 71 69 67 74 62 82 98 101 79 105 79 69 62 73 Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-6
  • 7. Tabular Summary: Frequency and Percent Frequency PPaarrttss CCoosstt (($$)) 5500--5599 6600--6699 7700--7799 8800--8899 9900--9999 110000--110099 PPaarrttss FFrreeqquueennccyy 22 1133 1166 77 77 55 5500 PPeerrcceenntt FFrreeqquueennccyy 44 2266 3322 1144 1144 1100 110000 ((22/5500))110000 Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-7
  • 8. Graphical Summary: Histogram 18 16 14 12 10 8 6 4 2 Parts Cost ($) Frequency 50-59 60-69 70-79 80-89 90-99 100-110 TTuunnee--uupp PPaarrttss CCoosstt Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-8
  • 9. Histogram (Continued)  Symmetric  Left tail is the mirror image of the right tail  Example: heights and weights of people Relative Frequency .35 .30 .25 .20 .15 .10 .05 0 Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-9
  • 10. Histogram (Continued)  Moderately Skewed Left  A longer tail to the left  Example: exam scores Relative Frequency .35 .30 .25 .20 .15 .10 .05 0 Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-10
  • 11. Histogram (Continued)  Moderately Right Skewed  A Longer tail to the right  Example: housing values Relative Frequency .35 .30 .25 .20 .15 .10 .05 0 Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-11
  • 12. Histogram (Continued)  Highly Skewed Right  A very long tail to the right  Example: .35 executive salaries .30 Relative Frequency .05 .25 .20 .15 .10 0 Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-12
  • 13. Frequency Distribution Example Example: A manufacturer of insulation randomly selects 20 winter days and records the daily high temperature 24, 35, 17, 21, 24, 37, 26, 46, 58, 30, 32, 13, 12, 38, 41, 43, 44, 27, 53, 27 Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-13
  • 14. Frequency Distribution Example (continued)  Sort raw data in ascending order: 12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58  Find range: 58 - 12 = 46  Select number of classes: 5 (usually between 5 and 15)  Compute class interval (width): 10 (46/5 then round up)  Determine class boundaries (limits): 10, 20, 30, 40, 50, 60  Compute class midpoints: 15, 25, 35, 45, 55  Count observations assign to classes Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-14
  • 15. Frequency Distribution Example Data in ordered array: (continued) 12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58 Relative Frequency Percentage Class Frequency 10 but less than 20 3 .15 15 20 but less than 30 6 .30 30 30 but less than 40 5 .25 25 40 but less than 50 4 .20 20 50 but less than 60 2 .10 10 Total 20 1.00 100 Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-15
  • 16. Tabulating Numerical Data: Cumulative Frequency 12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58 Class Data in ordered array: Frequency Cumulative Percentage Cumulative Percentage Frequency 10 but less than 20 3 15 3 15 20 but less than 30 6 30 9 45 30 but less than 40 5 25 14 70 40 but less than 50 4 20 18 90 50 but less than 60 2 10 20 100 Total 20 100 Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-16
  • 17. Graphing Numerical Data: The Histogram  A graph of the data in a frequency distribution is called a histogram  The class boundaries (or class midpoints) are shown on the horizontal axis  the vertical axis is either frequency, relative frequency, or percentage  Bars of the appropriate heights are used to represent the number of observations within each class Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-17
  • 18. Histogram Example Histogram: Daily High Temperature 7 6 5 4 3 2 1 0 5 15 25 35 45 55 65 Frequency Frequency Class Midpoints Class Midpoint 10 but less than 20 15 3 20 but less than 30 25 6 30 but less than 40 35 5 40 but less than 50 45 4 50 but less than 60 55 2 (No gaps between bars) Class Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-18
  • 19. Graphing Numerical Data: The Frequency Polygon Frequency Polygon: Daily High Temperature 7 6 5 4 3 2 1 0 5 15 25 35 45 55 65 Frequency Class Midpoints Class Frequency Class Midpoint 10 but less than 20 15 3 20 but less than 30 25 6 30 but less than 40 35 5 40 but less than 50 45 4 50 but less than 60 55 2 (In a percentage polygon the vertical axis would be defined to show the percentage of observations per class) Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-19
  • 20. Graphing Cumulative Frequencies: The Ogive (Cumulative % Polygon) Ogive: Daily High Temperature 100 80 60 40 20 0 10 20 30 40 50 60 Cumulative Percentage Class Boundaries (Not Midpoints) Class Cumulative Percentage Lower class boundary Less than 10 0 0 10 but less than 20 10 15 20 but less than 30 20 45 30 but less than 40 30 70 40 but less than 50 40 90 50 but less than 60 50 100 Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-20
  • 21. Categorical Data   Categorical data involves categories or  groups.   These can be made without the fear of  their order to be disturbed  i.e. sex, age, marital status.   It covers the following topics:  Frequency Distribution  Graphs Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-21
  • 22. Example: Marada Inn Guests staying at Marada Inn were asked to rate the quality of their accommodations as being excellent, above average, average, below average, or poor. The ratings provided by a sample of 20 guests are: BBeellooww AAvveerraaggee AAbboovvee AAvveerraaggee AAbboovvee AAvveerraaggee AAvveerraaggee AAbboovvee AAvveerraaggee AAvveerraaggee AAbboovvee AAvveerraaggee AAvveerraaggee AAbboovvee AAvveerraaggee BBeellooww AAvveerraaggee PPoooorr EExxcceelllleenntt AAbboovvee AAvveerraaggee AAvveerraaggee AAbboovvee AAvveerraaggee AAbboovvee AAvveerraaggee BBeellooww AAvveerraaggee PPoooorr AAbboovvee AAvveerraaggee AAvveerraaggee AAvveerraaggee Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-22
  • 23. FFrreeqquueennccyy DDiissttrriibbuuttiioonn RRaattiinngg FFrreeqquueennccyy PPoooorr BBeellooww AAvveerraaggee AAvveerraaggee AAbboovvee AAvveerraaggee EExxcceelllleenntt 22 33 55 99 11 TToottaall 2200 Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-23
  • 24. BBaarr GGrraapphh 10 9 8 7 MMaarraaddaa IInnnn QQuuaalliittyy RRaattiinnggss Excellent Frequency Poor Below Average Average Above Average Rating 6 5 4 3 2 1 Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-24
  • 25. PPeerrcceennttaaggee FFrreeqquueennccyy DDiissttrriibbuuttiioonn RRaattiinngg PPeerrcceennttaaggeess PPoooorr BBeellooww AAvveerraaggee AAvveerraaggee AAbboovvee AAvveerraaggee EExxcceelllleenntt 1100 1155 2255 4455 55 Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-25
  • 26. PPiiee CChhaarrtt MMMMaaaarrrraaaaddddaaaa IIIInnnnnnnn QQQQuuuuaaaalllliiiittttyyyy RRRRaaaattttiiiinnnnggggssss Poor 10% Below Average 15% Average 25% Excellent 5% Above Average 45% Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-26
  • 27. PPeerrcceennttaaggee FFrreeqquueennccyy DDiissttrriibbuuttiioonn RRaattiinngg AAnngglleess PPoooorr BBeellooww AAvveerraaggee AAvveerraaggee AAbboovvee AAvveerraaggee EExxcceelllleenntt 3366 5544 9900 116622 1188 CCuummiillaattiivvee AAnngglleess 3366 9900 118800 334422 336600 Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 2-27