SlideShare a Scribd company logo
Welcome To Our
presentation on
Probability
What is Probability?
Probability is the chance that something will happen - how likely
it is that some event will happen.
Sometimes you can measure a probability with a number like
"10% chance of rain", or you can use words such as
impossible, unlikely, possible, even chance, likely and certain.
Example: "It is unlikely to rain tomorrow".
• Exhaustive Events:
The total number of all possible elementary outcomes in a random
experiment is known as ‘exhaustive events’. In other words, a set is said to be
exhaustive, when no other possibilities exists.
• Favorable Events:
The elementary outcomes which entail or favor the happening of an
event is known as ‘favorable events’ i.e., the outcomes which help in the
occurrence of that event.
• Mutually Exclusive Events:
Events are said to be ‘mutually exclusive’ if the occurrence of an event
totally prevents occurrence of all other events in a trial. In other words, two
events A and B cannot occur simultaneously.
• Equally likely or Equi-probable Events:
Outcomes are said to be ‘equally likely’ if there is no reason
to expect one outcome to occur in preference to another. i.e.,
among all exhaustive outcomes, each of them has equal chance
of occurrence.
• Complementary Events:
Let E denote occurrence of event. The complement of E
denotes the non occurrence of event E. Complement of E is
denoted by ‘Ē’.
• Independent Events:
Two or more events are said to be ‘independent’, in a
series of a trials if the outcome of one event is does not affect the
outcome of the other event or vise versa.
In other words, several events are said to be ‘dependents’ if the
occurrence of an event is affected by the occurrence of any number of
remaining events, in a series of trials.
Measurement of Probability:
There are three approaches to construct a measure of probability of
occurrence of an event. They are:
 Classical Approach,
 Frequency Approach and
 Axiomatic Approach.
Classical or Mathematical
Approach:
In this approach we assume that an experiment or trial results in
any one of many possible outcomes, each outcome being Equi-probable or
equally-likely.
Definition: If a trial results in ‘n’ exhaustive, mutually exclusive, equally
likely and independent outcomes, and if ‘m’ of them are favorable for the
happening of the event E, then the probability ‘P’ of occurrence of the event
‘E’ is given by-
P(E) =
Number of outcomes favourable to event E
Exhaustive number of outcomes
=
m
n
Empirical or Statistical Approach:
This approach is also called the ‘frequency’ approach to probability.
Here the probability is obtained by actually performing the experiment large
number of times. As the number of trials n increases, we get more accurate
result.
Definition: Consider a random experiment which is repeated large number of
times under essentially homogeneous and identical conditions. If ‘n’ denotes
the number of trials and ‘m’ denotes the number of times an event A has
occurred, then, probability of event A is the limiting value of the relative
frequency m .
n
Axiomatic Approach:
This approach was proposed by Russian Mathematician
A.N.Kolmogorov in1933.
‘Axioms’ are statements which are reasonably true and are accepted
as such, without seeking any proof.
Definition: Let S be the sample space associated with a random experiment.
Let A be any event in S. then P(A) is the probability of occurrence of A if the
following axioms are satisfied.
1. P(A)>0, where A is any event.
2. P(S)=1.
3. P(AUB) = P(A) + P(B), when event A and B are mutually exclusive.
Three types of ProbabilityThree types of Probability
1. Theoretical probability:
For theoretical reasons, we assume that all n
possible outcomes of a particular experiment are
equally likely, and we assign a probability of to each
possible outcome. Example: The theoretical
probability of rolling a 3 on a regular 6 sided die is 1/6
2. Relative frequency interpretation of probability:
How many times A occurs
How many trials
Relative Frequency is based on observation or actual
measurements.
Example: A die is rolled 100 times. The number 3 is rolled 12 times. The
relative frequency of rolling a 3 is 12/100.
3. Personal or subjective probability:
These are values (between 0 and 1 or 0 and 100%) assigned by
individuals based on how likely they think events are to occur. Example: The
probability of my being asked on a date for this weekend is 10%.
The probability of event A =

1. The probability of an event is between 0 and 1. A probability of 1 is
equivalent to 100% certainty. Probabilities can be expressed at fractions,
decimals, or percents.
0 ≤ pr(A) ≤ 1
2. The sum of the probabilities of all possible outcomes is 1 or 100%. If A, B,
and C are the only possible outcomes, then pr(A) + pr(B) + pr(C) = 1
Example: A bag contains 5 red marbles, 3 blue marbles, and 2 green
marbles. pr(red) + pr(blue) + pr(green) = 1
1
10
2
10
3
10
5
=++
3. The sum of the probability of an event occurring and it not occurring
is 1. pr(A) + pr(not A) = 1 or pr(not A) = 1 - pr(A)
Example: A bag contains 5 red marbles, 3 blue marbles, and 2 green marbles.
pr (red) + pr(not red) = 1
3
+ pr(not red) = 1 pr(not red) =
10
7
10
4. If two events A and B are independent (this means that the
occurrence of A has no impact at all on whether B occurs and vice versa), then
the probability of A and B occurring is the product of their individual
probabilities. pr (A and B) = pr(A) · pr(B)
Example: roll a die and flip a coin. pr(heads and roll a 3) = pr(H) and pr(3)
1 1 1
2 6 12
5. If two events A and B are mutually exclusive (meaning A cannot
occur at the same time as B occurs), then the probability of either A or B
occurring is the sum of their individual probabilities. Pr(A or B) = pr(A) + pr(B)
Example: A bag contains 5 red marbles, 3 blue marbles, and 2 green marbles.
pr(red or green) = pr(red) + pr(green)
5 2 7
10 10 10
6. If two events A and B are not mutually exclusive (meaning it is possible that
A and B occur at the same time), then the probability of either A or B occurring
is the sum of their individual probabilities minus the probability of both A and B
occurring. Pr(A or B) = pr(A) + pr(B) – pr(A and B)
13
Example: There are 20 people in the room: 12 girls (5 with blond hair
and 7 with brown hair) and 8 boys (4 with blond hair and 4 with brown hair).
There are a total of 9 blonds and 11 with brown hair. One person from the
group is chosen randomly. pr(girl or blond) = pr(girl) + pr(blond) – pr(girl and
blond) 12 9 5 16
20 20 20 20
7. The probability of at least one event occurring out of multiple events is
equal to one minus the probability of none of the events occurring. pr(at least
one) = 1 – pr(none)
Example: roll a coin 4 times. What is the probability of getting at least
one head on the 4 rolls.
pr(at least one H) = 1 – pr(no H) = 1 – pr (TTTT) = 1
1 1 1 1
2 2 2 2
= 1
1 15
16 16
8. If event B is a subset of event A, then the probability of B is less than
or equal to the probability of A. pr(B) ≤ pr(A)
Example: There are 20 people in the room: 12 girls (5 with blond hair and 7 with
brown hair) and 8 boys (4 with blond hair and 4 with brown hair). pr (girl with
brown hair) ≤ pr(girl) 7 12
20 20
<
THANKTHANK
YOUYOU
Ad

More Related Content

What's hot (20)

Binomial distribution
Binomial distributionBinomial distribution
Binomial distribution
Dr. Satyanarayan Pandey
 
PROBABILITY
PROBABILITYPROBABILITY
PROBABILITY
manas das
 
Frequency distribution
Frequency distributionFrequency distribution
Frequency distribution
Aishwarya PT
 
Binomial distribution
Binomial distributionBinomial distribution
Binomial distribution
yatin bhardwaj
 
probability
probabilityprobability
probability
Unsa Shakir
 
Poisson distribution
Poisson distributionPoisson distribution
Poisson distribution
Anindya Jana
 
Probability Theory
Probability TheoryProbability Theory
Probability Theory
Parul Singh
 
poisson distribution
poisson distributionpoisson distribution
poisson distribution
sangeeta saini
 
Probability
Probability Probability
Probability
Maria Romina Angustia
 
The Binomial, Poisson, and Normal Distributions
The Binomial, Poisson, and Normal DistributionsThe Binomial, Poisson, and Normal Distributions
The Binomial, Poisson, and Normal Distributions
SCE.Surat
 
Probability distribution
Probability distributionProbability distribution
Probability distribution
Rohit kumar
 
Binomial and Poisson Distribution
Binomial and Poisson  DistributionBinomial and Poisson  Distribution
Binomial and Poisson Distribution
Sundar B N
 
The Standard Normal Distribution
The Standard Normal Distribution  The Standard Normal Distribution
The Standard Normal Distribution
Long Beach City College
 
Binomial,Poisson,Geometric,Normal distribution
Binomial,Poisson,Geometric,Normal distributionBinomial,Poisson,Geometric,Normal distribution
Binomial,Poisson,Geometric,Normal distribution
Bharath kumar Karanam
 
Sampling distribution
Sampling distributionSampling distribution
Sampling distribution
swarna dey
 
Probability concept and Probability distribution
Probability concept and Probability distributionProbability concept and Probability distribution
Probability concept and Probability distribution
Southern Range, Berhampur, Odisha
 
Basic Probability
Basic Probability Basic Probability
Basic Probability
kaurab
 
introduction to probability
introduction to probabilityintroduction to probability
introduction to probability
lovemucheca
 
Measures of central tendency ppt
Measures of central tendency pptMeasures of central tendency ppt
Measures of central tendency ppt
NighatKanwal
 
Normal Distribution
Normal DistributionNormal Distribution
Normal Distribution
CIToolkit
 
Frequency distribution
Frequency distributionFrequency distribution
Frequency distribution
Aishwarya PT
 
Poisson distribution
Poisson distributionPoisson distribution
Poisson distribution
Anindya Jana
 
Probability Theory
Probability TheoryProbability Theory
Probability Theory
Parul Singh
 
The Binomial, Poisson, and Normal Distributions
The Binomial, Poisson, and Normal DistributionsThe Binomial, Poisson, and Normal Distributions
The Binomial, Poisson, and Normal Distributions
SCE.Surat
 
Probability distribution
Probability distributionProbability distribution
Probability distribution
Rohit kumar
 
Binomial and Poisson Distribution
Binomial and Poisson  DistributionBinomial and Poisson  Distribution
Binomial and Poisson Distribution
Sundar B N
 
Binomial,Poisson,Geometric,Normal distribution
Binomial,Poisson,Geometric,Normal distributionBinomial,Poisson,Geometric,Normal distribution
Binomial,Poisson,Geometric,Normal distribution
Bharath kumar Karanam
 
Sampling distribution
Sampling distributionSampling distribution
Sampling distribution
swarna dey
 
Basic Probability
Basic Probability Basic Probability
Basic Probability
kaurab
 
introduction to probability
introduction to probabilityintroduction to probability
introduction to probability
lovemucheca
 
Measures of central tendency ppt
Measures of central tendency pptMeasures of central tendency ppt
Measures of central tendency ppt
NighatKanwal
 
Normal Distribution
Normal DistributionNormal Distribution
Normal Distribution
CIToolkit
 

Similar to Statistics: Probability (20)

Probability basics and bayes' theorem
Probability basics and bayes' theoremProbability basics and bayes' theorem
Probability basics and bayes' theorem
Balaji P
 
A powerful powerpoint presentation on probability
A powerful powerpoint presentation on probabilityA powerful powerpoint presentation on probability
A powerful powerpoint presentation on probability
ayuschatterjee2003
 
probability powerpoint presentation with text
probability powerpoint presentation with textprobability powerpoint presentation with text
probability powerpoint presentation with text
ayuschatterjee2003
 
probability-120904030152-phpapp01.pdf
probability-120904030152-phpapp01.pdfprobability-120904030152-phpapp01.pdf
probability-120904030152-phpapp01.pdf
HimanshuSharma617324
 
probability-120611030603-phpapp02.pptx
probability-120611030603-phpapp02.pptxprobability-120611030603-phpapp02.pptx
probability-120611030603-phpapp02.pptx
SoujanyaLk1
 
introduction of probabilityChapter5.pptx
introduction of probabilityChapter5.pptxintroduction of probabilityChapter5.pptx
introduction of probabilityChapter5.pptx
epheremabera12345
 
Probability
ProbabilityProbability
Probability
Mahi Muthananickal
 
Probability
ProbabilityProbability
Probability
lrassbach
 
Basic concepts of probability
Basic concepts of probabilityBasic concepts of probability
Basic concepts of probability
Avjinder (Avi) Kaler
 
Probability concepts for Data Analytics
Probability concepts for Data AnalyticsProbability concepts for Data Analytics
Probability concepts for Data Analytics
SSaudia
 
Complements and Conditional Probability, and Bayes' Theorem
 Complements and Conditional Probability, and Bayes' Theorem Complements and Conditional Probability, and Bayes' Theorem
Complements and Conditional Probability, and Bayes' Theorem
Long Beach City College
 
Introduction to probability.pdf
Introduction to probability.pdfIntroduction to probability.pdf
Introduction to probability.pdf
YonasTsagaye
 
vinayjoshi-131204045346-phpapp02.pdf
vinayjoshi-131204045346-phpapp02.pdfvinayjoshi-131204045346-phpapp02.pdf
vinayjoshi-131204045346-phpapp02.pdf
sanjayjha933861
 
PROBABILITY
PROBABILITYPROBABILITY
PROBABILITY
VIV13
 
group1-151014013653-lva1-app6891.pdf
group1-151014013653-lva1-app6891.pdfgroup1-151014013653-lva1-app6891.pdf
group1-151014013653-lva1-app6891.pdf
VenkateshPandiri4
 
Probability theory
Probability theoryProbability theory
Probability theory
Regent University
 
Basic probability with simple example.pptx
Basic probability with simple example.pptxBasic probability with simple example.pptx
Basic probability with simple example.pptx
lavanya468923
 
PROBABILITY4.pptx
PROBABILITY4.pptxPROBABILITY4.pptx
PROBABILITY4.pptx
SNEHA AGRAWAL GUPTA
 
loi de distribution 2024preventive medcine introduction in biostatistics
loi de distribution 2024preventive medcine  introduction in biostatisticsloi de distribution 2024preventive medcine  introduction in biostatistics
loi de distribution 2024preventive medcine introduction in biostatistics
Caramel40
 
Mathematics
MathematicsMathematics
Mathematics
upemuba
 
Probability basics and bayes' theorem
Probability basics and bayes' theoremProbability basics and bayes' theorem
Probability basics and bayes' theorem
Balaji P
 
A powerful powerpoint presentation on probability
A powerful powerpoint presentation on probabilityA powerful powerpoint presentation on probability
A powerful powerpoint presentation on probability
ayuschatterjee2003
 
probability powerpoint presentation with text
probability powerpoint presentation with textprobability powerpoint presentation with text
probability powerpoint presentation with text
ayuschatterjee2003
 
probability-120904030152-phpapp01.pdf
probability-120904030152-phpapp01.pdfprobability-120904030152-phpapp01.pdf
probability-120904030152-phpapp01.pdf
HimanshuSharma617324
 
probability-120611030603-phpapp02.pptx
probability-120611030603-phpapp02.pptxprobability-120611030603-phpapp02.pptx
probability-120611030603-phpapp02.pptx
SoujanyaLk1
 
introduction of probabilityChapter5.pptx
introduction of probabilityChapter5.pptxintroduction of probabilityChapter5.pptx
introduction of probabilityChapter5.pptx
epheremabera12345
 
Probability concepts for Data Analytics
Probability concepts for Data AnalyticsProbability concepts for Data Analytics
Probability concepts for Data Analytics
SSaudia
 
Complements and Conditional Probability, and Bayes' Theorem
 Complements and Conditional Probability, and Bayes' Theorem Complements and Conditional Probability, and Bayes' Theorem
Complements and Conditional Probability, and Bayes' Theorem
Long Beach City College
 
Introduction to probability.pdf
Introduction to probability.pdfIntroduction to probability.pdf
Introduction to probability.pdf
YonasTsagaye
 
vinayjoshi-131204045346-phpapp02.pdf
vinayjoshi-131204045346-phpapp02.pdfvinayjoshi-131204045346-phpapp02.pdf
vinayjoshi-131204045346-phpapp02.pdf
sanjayjha933861
 
PROBABILITY
PROBABILITYPROBABILITY
PROBABILITY
VIV13
 
group1-151014013653-lva1-app6891.pdf
group1-151014013653-lva1-app6891.pdfgroup1-151014013653-lva1-app6891.pdf
group1-151014013653-lva1-app6891.pdf
VenkateshPandiri4
 
Basic probability with simple example.pptx
Basic probability with simple example.pptxBasic probability with simple example.pptx
Basic probability with simple example.pptx
lavanya468923
 
loi de distribution 2024preventive medcine introduction in biostatistics
loi de distribution 2024preventive medcine  introduction in biostatisticsloi de distribution 2024preventive medcine  introduction in biostatistics
loi de distribution 2024preventive medcine introduction in biostatistics
Caramel40
 
Mathematics
MathematicsMathematics
Mathematics
upemuba
 
Ad

More from Sultan Mahmood (18)

Nestle- Company profile
Nestle- Company profile Nestle- Company profile
Nestle- Company profile
Sultan Mahmood
 
International Federation of Accountants-IFAC
International Federation of Accountants-IFACInternational Federation of Accountants-IFAC
International Federation of Accountants-IFAC
Sultan Mahmood
 
Marketing presentation green harvest
Marketing presentation green harvestMarketing presentation green harvest
Marketing presentation green harvest
Sultan Mahmood
 
Gachwala.com- A Business plan
Gachwala.com- A Business plan Gachwala.com- A Business plan
Gachwala.com- A Business plan
Sultan Mahmood
 
Project Life Cycle - Making of a photography exhibition
Project Life Cycle - Making of a photography exhibitionProject Life Cycle - Making of a photography exhibition
Project Life Cycle - Making of a photography exhibition
Sultan Mahmood
 
The recent Trend in the world of Competitive Environment
The recent Trend in the world of Competitive Environment The recent Trend in the world of Competitive Environment
The recent Trend in the world of Competitive Environment
Sultan Mahmood
 
A Case Study on Deutsche Bank
A Case Study on Deutsche Bank A Case Study on Deutsche Bank
A Case Study on Deutsche Bank
Sultan Mahmood
 
Social change And Evaluation theories
Social change And Evaluation theories Social change And Evaluation theories
Social change And Evaluation theories
Sultan Mahmood
 
Characteristics of social change
Characteristics of social changeCharacteristics of social change
Characteristics of social change
Sultan Mahmood
 
A Presentation on Crime and its classification
A Presentation on Crime and its classification A Presentation on Crime and its classification
A Presentation on Crime and its classification
Sultan Mahmood
 
Marketing Mix Analysis on Unilever
Marketing Mix Analysis on Unilever Marketing Mix Analysis on Unilever
Marketing Mix Analysis on Unilever
Sultan Mahmood
 
Street Food Vendor
Street Food VendorStreet Food Vendor
Street Food Vendor
Sultan Mahmood
 
Quality of Working Condition Of RMG Workers In Bangladesh
Quality of Working Condition Of RMG Workers In BangladeshQuality of Working Condition Of RMG Workers In Bangladesh
Quality of Working Condition Of RMG Workers In Bangladesh
Sultan Mahmood
 
Role of internet in business
Role of internet in business Role of internet in business
Role of internet in business
Sultan Mahmood
 
Revolution of IT in Education
Revolution of IT in Education Revolution of IT in Education
Revolution of IT in Education
Sultan Mahmood
 
Atm Service in bangladesh
Atm Service in bangladeshAtm Service in bangladesh
Atm Service in bangladesh
Sultan Mahmood
 
Green House Effect
Green House EffectGreen House Effect
Green House Effect
Sultan Mahmood
 
Online Business
Online Business Online Business
Online Business
Sultan Mahmood
 
Nestle- Company profile
Nestle- Company profile Nestle- Company profile
Nestle- Company profile
Sultan Mahmood
 
International Federation of Accountants-IFAC
International Federation of Accountants-IFACInternational Federation of Accountants-IFAC
International Federation of Accountants-IFAC
Sultan Mahmood
 
Marketing presentation green harvest
Marketing presentation green harvestMarketing presentation green harvest
Marketing presentation green harvest
Sultan Mahmood
 
Gachwala.com- A Business plan
Gachwala.com- A Business plan Gachwala.com- A Business plan
Gachwala.com- A Business plan
Sultan Mahmood
 
Project Life Cycle - Making of a photography exhibition
Project Life Cycle - Making of a photography exhibitionProject Life Cycle - Making of a photography exhibition
Project Life Cycle - Making of a photography exhibition
Sultan Mahmood
 
The recent Trend in the world of Competitive Environment
The recent Trend in the world of Competitive Environment The recent Trend in the world of Competitive Environment
The recent Trend in the world of Competitive Environment
Sultan Mahmood
 
A Case Study on Deutsche Bank
A Case Study on Deutsche Bank A Case Study on Deutsche Bank
A Case Study on Deutsche Bank
Sultan Mahmood
 
Social change And Evaluation theories
Social change And Evaluation theories Social change And Evaluation theories
Social change And Evaluation theories
Sultan Mahmood
 
Characteristics of social change
Characteristics of social changeCharacteristics of social change
Characteristics of social change
Sultan Mahmood
 
A Presentation on Crime and its classification
A Presentation on Crime and its classification A Presentation on Crime and its classification
A Presentation on Crime and its classification
Sultan Mahmood
 
Marketing Mix Analysis on Unilever
Marketing Mix Analysis on Unilever Marketing Mix Analysis on Unilever
Marketing Mix Analysis on Unilever
Sultan Mahmood
 
Quality of Working Condition Of RMG Workers In Bangladesh
Quality of Working Condition Of RMG Workers In BangladeshQuality of Working Condition Of RMG Workers In Bangladesh
Quality of Working Condition Of RMG Workers In Bangladesh
Sultan Mahmood
 
Role of internet in business
Role of internet in business Role of internet in business
Role of internet in business
Sultan Mahmood
 
Revolution of IT in Education
Revolution of IT in Education Revolution of IT in Education
Revolution of IT in Education
Sultan Mahmood
 
Atm Service in bangladesh
Atm Service in bangladeshAtm Service in bangladesh
Atm Service in bangladesh
Sultan Mahmood
 
Ad

Recently uploaded (20)

How to Add Customer Note in Odoo 18 POS - Odoo Slides
How to Add Customer Note in Odoo 18 POS - Odoo SlidesHow to Add Customer Note in Odoo 18 POS - Odoo Slides
How to Add Customer Note in Odoo 18 POS - Odoo Slides
Celine George
 
How to Create Kanban View in Odoo 18 - Odoo Slides
How to Create Kanban View in Odoo 18 - Odoo SlidesHow to Create Kanban View in Odoo 18 - Odoo Slides
How to Create Kanban View in Odoo 18 - Odoo Slides
Celine George
 
Lecture 1 Introduction history and institutes of entomology_1.pptx
Lecture 1 Introduction history and institutes of entomology_1.pptxLecture 1 Introduction history and institutes of entomology_1.pptx
Lecture 1 Introduction history and institutes of entomology_1.pptx
Arshad Shaikh
 
LDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDMMIA Reiki News Ed3 Vol1 For Team and GuestsLDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDM Mia eStudios
 
Biophysics Chapter 3 Methods of Studying Macromolecules.pdf
Biophysics Chapter 3 Methods of Studying Macromolecules.pdfBiophysics Chapter 3 Methods of Studying Macromolecules.pdf
Biophysics Chapter 3 Methods of Studying Macromolecules.pdf
PKLI-Institute of Nursing and Allied Health Sciences Lahore , Pakistan.
 
How to Create A Todo List In Todo of Odoo 18
How to Create A Todo List In Todo of Odoo 18How to Create A Todo List In Todo of Odoo 18
How to Create A Todo List In Todo of Odoo 18
Celine George
 
YSPH VMOC Special Report - Measles Outbreak Southwest US 5-3-2025.pptx
YSPH VMOC Special Report - Measles Outbreak  Southwest US 5-3-2025.pptxYSPH VMOC Special Report - Measles Outbreak  Southwest US 5-3-2025.pptx
YSPH VMOC Special Report - Measles Outbreak Southwest US 5-3-2025.pptx
Yale School of Public Health - The Virtual Medical Operations Center (VMOC)
 
Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...
Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...
Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...
TechSoup
 
Cultivation Practice of Onion in Nepal.pptx
Cultivation Practice of Onion in Nepal.pptxCultivation Practice of Onion in Nepal.pptx
Cultivation Practice of Onion in Nepal.pptx
UmeshTimilsina1
 
How to Configure Public Holidays & Mandatory Days in Odoo 18
How to Configure Public Holidays & Mandatory Days in Odoo 18How to Configure Public Holidays & Mandatory Days in Odoo 18
How to Configure Public Holidays & Mandatory Days in Odoo 18
Celine George
 
How to Configure Scheduled Actions in odoo 18
How to Configure Scheduled Actions in odoo 18How to Configure Scheduled Actions in odoo 18
How to Configure Scheduled Actions in odoo 18
Celine George
 
How to Manage Upselling in Odoo 18 Sales
How to Manage Upselling in Odoo 18 SalesHow to Manage Upselling in Odoo 18 Sales
How to Manage Upselling in Odoo 18 Sales
Celine George
 
SCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptx
SCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptxSCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptx
SCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptx
Ronisha Das
 
CNS infections (encephalitis, meningitis & Brain abscess
CNS infections (encephalitis, meningitis & Brain abscessCNS infections (encephalitis, meningitis & Brain abscess
CNS infections (encephalitis, meningitis & Brain abscess
Mohamed Rizk Khodair
 
Form View Attributes in Odoo 18 - Odoo Slides
Form View Attributes in Odoo 18 - Odoo SlidesForm View Attributes in Odoo 18 - Odoo Slides
Form View Attributes in Odoo 18 - Odoo Slides
Celine George
 
BỘ ĐỀ TUYỂN SINH VÀO LỚP 10 TIẾNG ANH - 25 ĐỀ THI BÁM SÁT CẤU TRÚC MỚI NHẤT, ...
BỘ ĐỀ TUYỂN SINH VÀO LỚP 10 TIẾNG ANH - 25 ĐỀ THI BÁM SÁT CẤU TRÚC MỚI NHẤT, ...BỘ ĐỀ TUYỂN SINH VÀO LỚP 10 TIẾNG ANH - 25 ĐỀ THI BÁM SÁT CẤU TRÚC MỚI NHẤT, ...
BỘ ĐỀ TUYỂN SINH VÀO LỚP 10 TIẾNG ANH - 25 ĐỀ THI BÁM SÁT CẤU TRÚC MỚI NHẤT, ...
Nguyen Thanh Tu Collection
 
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
Celine George
 
Grade 2 - Mathematics - Printable Worksheet
Grade 2 - Mathematics - Printable WorksheetGrade 2 - Mathematics - Printable Worksheet
Grade 2 - Mathematics - Printable Worksheet
Sritoma Majumder
 
Ranking_Felicidade_2024_com_Educacao_Marketing Educacional_V2.pdf
Ranking_Felicidade_2024_com_Educacao_Marketing Educacional_V2.pdfRanking_Felicidade_2024_com_Educacao_Marketing Educacional_V2.pdf
Ranking_Felicidade_2024_com_Educacao_Marketing Educacional_V2.pdf
Rafael Villas B
 
Link your Lead Opportunities into Spreadsheet using odoo CRM
Link your Lead Opportunities into Spreadsheet using odoo CRMLink your Lead Opportunities into Spreadsheet using odoo CRM
Link your Lead Opportunities into Spreadsheet using odoo CRM
Celine George
 
How to Add Customer Note in Odoo 18 POS - Odoo Slides
How to Add Customer Note in Odoo 18 POS - Odoo SlidesHow to Add Customer Note in Odoo 18 POS - Odoo Slides
How to Add Customer Note in Odoo 18 POS - Odoo Slides
Celine George
 
How to Create Kanban View in Odoo 18 - Odoo Slides
How to Create Kanban View in Odoo 18 - Odoo SlidesHow to Create Kanban View in Odoo 18 - Odoo Slides
How to Create Kanban View in Odoo 18 - Odoo Slides
Celine George
 
Lecture 1 Introduction history and institutes of entomology_1.pptx
Lecture 1 Introduction history and institutes of entomology_1.pptxLecture 1 Introduction history and institutes of entomology_1.pptx
Lecture 1 Introduction history and institutes of entomology_1.pptx
Arshad Shaikh
 
LDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDMMIA Reiki News Ed3 Vol1 For Team and GuestsLDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDM Mia eStudios
 
How to Create A Todo List In Todo of Odoo 18
How to Create A Todo List In Todo of Odoo 18How to Create A Todo List In Todo of Odoo 18
How to Create A Todo List In Todo of Odoo 18
Celine George
 
Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...
Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...
Drive Supporter Growth from Awareness to Advocacy with TechSoup Marketing Ser...
TechSoup
 
Cultivation Practice of Onion in Nepal.pptx
Cultivation Practice of Onion in Nepal.pptxCultivation Practice of Onion in Nepal.pptx
Cultivation Practice of Onion in Nepal.pptx
UmeshTimilsina1
 
How to Configure Public Holidays & Mandatory Days in Odoo 18
How to Configure Public Holidays & Mandatory Days in Odoo 18How to Configure Public Holidays & Mandatory Days in Odoo 18
How to Configure Public Holidays & Mandatory Days in Odoo 18
Celine George
 
How to Configure Scheduled Actions in odoo 18
How to Configure Scheduled Actions in odoo 18How to Configure Scheduled Actions in odoo 18
How to Configure Scheduled Actions in odoo 18
Celine George
 
How to Manage Upselling in Odoo 18 Sales
How to Manage Upselling in Odoo 18 SalesHow to Manage Upselling in Odoo 18 Sales
How to Manage Upselling in Odoo 18 Sales
Celine George
 
SCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptx
SCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptxSCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptx
SCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptx
Ronisha Das
 
CNS infections (encephalitis, meningitis & Brain abscess
CNS infections (encephalitis, meningitis & Brain abscessCNS infections (encephalitis, meningitis & Brain abscess
CNS infections (encephalitis, meningitis & Brain abscess
Mohamed Rizk Khodair
 
Form View Attributes in Odoo 18 - Odoo Slides
Form View Attributes in Odoo 18 - Odoo SlidesForm View Attributes in Odoo 18 - Odoo Slides
Form View Attributes in Odoo 18 - Odoo Slides
Celine George
 
BỘ ĐỀ TUYỂN SINH VÀO LỚP 10 TIẾNG ANH - 25 ĐỀ THI BÁM SÁT CẤU TRÚC MỚI NHẤT, ...
BỘ ĐỀ TUYỂN SINH VÀO LỚP 10 TIẾNG ANH - 25 ĐỀ THI BÁM SÁT CẤU TRÚC MỚI NHẤT, ...BỘ ĐỀ TUYỂN SINH VÀO LỚP 10 TIẾNG ANH - 25 ĐỀ THI BÁM SÁT CẤU TRÚC MỚI NHẤT, ...
BỘ ĐỀ TUYỂN SINH VÀO LỚP 10 TIẾNG ANH - 25 ĐỀ THI BÁM SÁT CẤU TRÚC MỚI NHẤT, ...
Nguyen Thanh Tu Collection
 
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
Celine George
 
Grade 2 - Mathematics - Printable Worksheet
Grade 2 - Mathematics - Printable WorksheetGrade 2 - Mathematics - Printable Worksheet
Grade 2 - Mathematics - Printable Worksheet
Sritoma Majumder
 
Ranking_Felicidade_2024_com_Educacao_Marketing Educacional_V2.pdf
Ranking_Felicidade_2024_com_Educacao_Marketing Educacional_V2.pdfRanking_Felicidade_2024_com_Educacao_Marketing Educacional_V2.pdf
Ranking_Felicidade_2024_com_Educacao_Marketing Educacional_V2.pdf
Rafael Villas B
 
Link your Lead Opportunities into Spreadsheet using odoo CRM
Link your Lead Opportunities into Spreadsheet using odoo CRMLink your Lead Opportunities into Spreadsheet using odoo CRM
Link your Lead Opportunities into Spreadsheet using odoo CRM
Celine George
 

Statistics: Probability

  • 2. What is Probability? Probability is the chance that something will happen - how likely it is that some event will happen. Sometimes you can measure a probability with a number like "10% chance of rain", or you can use words such as impossible, unlikely, possible, even chance, likely and certain. Example: "It is unlikely to rain tomorrow".
  • 3. • Exhaustive Events: The total number of all possible elementary outcomes in a random experiment is known as ‘exhaustive events’. In other words, a set is said to be exhaustive, when no other possibilities exists. • Favorable Events: The elementary outcomes which entail or favor the happening of an event is known as ‘favorable events’ i.e., the outcomes which help in the occurrence of that event. • Mutually Exclusive Events: Events are said to be ‘mutually exclusive’ if the occurrence of an event totally prevents occurrence of all other events in a trial. In other words, two events A and B cannot occur simultaneously.
  • 4. • Equally likely or Equi-probable Events: Outcomes are said to be ‘equally likely’ if there is no reason to expect one outcome to occur in preference to another. i.e., among all exhaustive outcomes, each of them has equal chance of occurrence. • Complementary Events: Let E denote occurrence of event. The complement of E denotes the non occurrence of event E. Complement of E is denoted by ‘Ē’. • Independent Events: Two or more events are said to be ‘independent’, in a series of a trials if the outcome of one event is does not affect the outcome of the other event or vise versa.
  • 5. In other words, several events are said to be ‘dependents’ if the occurrence of an event is affected by the occurrence of any number of remaining events, in a series of trials. Measurement of Probability: There are three approaches to construct a measure of probability of occurrence of an event. They are:  Classical Approach,  Frequency Approach and  Axiomatic Approach.
  • 6. Classical or Mathematical Approach: In this approach we assume that an experiment or trial results in any one of many possible outcomes, each outcome being Equi-probable or equally-likely. Definition: If a trial results in ‘n’ exhaustive, mutually exclusive, equally likely and independent outcomes, and if ‘m’ of them are favorable for the happening of the event E, then the probability ‘P’ of occurrence of the event ‘E’ is given by- P(E) = Number of outcomes favourable to event E Exhaustive number of outcomes = m n
  • 7. Empirical or Statistical Approach: This approach is also called the ‘frequency’ approach to probability. Here the probability is obtained by actually performing the experiment large number of times. As the number of trials n increases, we get more accurate result. Definition: Consider a random experiment which is repeated large number of times under essentially homogeneous and identical conditions. If ‘n’ denotes the number of trials and ‘m’ denotes the number of times an event A has occurred, then, probability of event A is the limiting value of the relative frequency m . n
  • 8. Axiomatic Approach: This approach was proposed by Russian Mathematician A.N.Kolmogorov in1933. ‘Axioms’ are statements which are reasonably true and are accepted as such, without seeking any proof. Definition: Let S be the sample space associated with a random experiment. Let A be any event in S. then P(A) is the probability of occurrence of A if the following axioms are satisfied. 1. P(A)>0, where A is any event. 2. P(S)=1. 3. P(AUB) = P(A) + P(B), when event A and B are mutually exclusive.
  • 9. Three types of ProbabilityThree types of Probability 1. Theoretical probability: For theoretical reasons, we assume that all n possible outcomes of a particular experiment are equally likely, and we assign a probability of to each possible outcome. Example: The theoretical probability of rolling a 3 on a regular 6 sided die is 1/6
  • 10. 2. Relative frequency interpretation of probability: How many times A occurs How many trials Relative Frequency is based on observation or actual measurements. Example: A die is rolled 100 times. The number 3 is rolled 12 times. The relative frequency of rolling a 3 is 12/100. 3. Personal or subjective probability: These are values (between 0 and 1 or 0 and 100%) assigned by individuals based on how likely they think events are to occur. Example: The probability of my being asked on a date for this weekend is 10%. The probability of event A =
  • 11.  1. The probability of an event is between 0 and 1. A probability of 1 is equivalent to 100% certainty. Probabilities can be expressed at fractions, decimals, or percents. 0 ≤ pr(A) ≤ 1 2. The sum of the probabilities of all possible outcomes is 1 or 100%. If A, B, and C are the only possible outcomes, then pr(A) + pr(B) + pr(C) = 1 Example: A bag contains 5 red marbles, 3 blue marbles, and 2 green marbles. pr(red) + pr(blue) + pr(green) = 1 1 10 2 10 3 10 5 =++ 3. The sum of the probability of an event occurring and it not occurring is 1. pr(A) + pr(not A) = 1 or pr(not A) = 1 - pr(A) Example: A bag contains 5 red marbles, 3 blue marbles, and 2 green marbles. pr (red) + pr(not red) = 1 3 + pr(not red) = 1 pr(not red) = 10 7 10
  • 12. 4. If two events A and B are independent (this means that the occurrence of A has no impact at all on whether B occurs and vice versa), then the probability of A and B occurring is the product of their individual probabilities. pr (A and B) = pr(A) · pr(B) Example: roll a die and flip a coin. pr(heads and roll a 3) = pr(H) and pr(3) 1 1 1 2 6 12 5. If two events A and B are mutually exclusive (meaning A cannot occur at the same time as B occurs), then the probability of either A or B occurring is the sum of their individual probabilities. Pr(A or B) = pr(A) + pr(B) Example: A bag contains 5 red marbles, 3 blue marbles, and 2 green marbles. pr(red or green) = pr(red) + pr(green) 5 2 7 10 10 10 6. If two events A and B are not mutually exclusive (meaning it is possible that A and B occur at the same time), then the probability of either A or B occurring is the sum of their individual probabilities minus the probability of both A and B occurring. Pr(A or B) = pr(A) + pr(B) – pr(A and B)
  • 13. 13 Example: There are 20 people in the room: 12 girls (5 with blond hair and 7 with brown hair) and 8 boys (4 with blond hair and 4 with brown hair). There are a total of 9 blonds and 11 with brown hair. One person from the group is chosen randomly. pr(girl or blond) = pr(girl) + pr(blond) – pr(girl and blond) 12 9 5 16 20 20 20 20 7. The probability of at least one event occurring out of multiple events is equal to one minus the probability of none of the events occurring. pr(at least one) = 1 – pr(none) Example: roll a coin 4 times. What is the probability of getting at least one head on the 4 rolls. pr(at least one H) = 1 – pr(no H) = 1 – pr (TTTT) = 1 1 1 1 1 2 2 2 2 = 1 1 15 16 16 8. If event B is a subset of event A, then the probability of B is less than or equal to the probability of A. pr(B) ≤ pr(A) Example: There are 20 people in the room: 12 girls (5 with blond hair and 7 with brown hair) and 8 boys (4 with blond hair and 4 with brown hair). pr (girl with brown hair) ≤ pr(girl) 7 12 20 20 <