Efficient Market Hypothesis is the popular theory about stock prediction. With its failure much research
has been carried in the area of prediction of stocks. This project is about taking non quantifiable data such
as financial news articles about a company and predicting its future stock trend with news sentiment
classification. Assuming that news articles have impact on stock market, this is an attempt to study
relationship between news and stock trend. To show this, we created three different classification models
which depict polarity of news articles being positive or negative. Observations show that RF and SVM
perform well in all types of testing. Naïve Bayes gives good result but not compared to the other two.
Experiments are conducted to evaluate various aspects of the proposed model and encouraging results are
obtained in all of the experiments. The accuracy of the prediction model is more than 80% and in
comparison with news random labelling with 50% of accuracy; the model has increased the accuracy by
30%.