This document provides an overview of time series analysis and its key components. It discusses that a time series is a set of data measured at successive times joined together by time order. The main components of a time series are trends, seasonal variations, cyclical variations, and irregular variations. Time series analysis is important for business forecasting, understanding past behavior, and facilitating comparison. There are two main mathematical models used - the additive model which assumes data is the sum of its components, and the multiplicative model which assumes data is the product of its components. Decomposition of a time series involves discovering, measuring, and isolating these different components.