Data Analysis and Statistics
Key terms
• Statistics
• Data
• Data Collection
• Descriptive Statistics
• Inferential Statistics
• Discrete Data
• Continuous Data
• Frequency Distribution
These introductory statistics slides will give you a basic understanding of statistics, types of statistics, variable and its types, the levels of measurements, data collection techniques, and types of sampling.
1. Introduction to statistics in curriculum and Instruction
1 The definition of statistics and other related terms
1.2 Descriptive statistics
3 Inferential statistics
1.4 Function and significance of statistics in education
5 Types and levels of measurement scale
2. Introduction to SPSS Software
3. Frequency Distribution
4. Normal Curve and Standard Score
5. Confidence Interval for the Mean, Proportions, and Variances
6. Hypothesis Testing with One and two Sample
7. Two-way Analysis of Variance
8. Correlation and Simple Linear Regression
9. CHI-SQUARE
1) Statistics is the study of collecting, organizing, analyzing, and drawing conclusions from data. It involves sampling, hypothesis testing, and using statistical tests tailored to measurement scales and hypothesis types.
2) Descriptive statistics describe and summarize data quantitatively, while inferential statistics allow generalizing from samples to populations through statistical testing and other methods.
3) The document discusses differences between statistics and statistical data, types of data, levels of measurement, sampling techniques, and uses of statistics.
Statistics can be used to analyze data, make predictions, and draw conclusions. It has a variety of applications including predicting disease occurrence, weather forecasting, medical studies, quality testing, and analyzing stock markets. There are two main branches of statistics - descriptive statistics which summarizes and presents data, and inferential statistics which analyzes samples to make conclusions about populations. Key terms include population, sample, parameter, statistic, variable, data, qualitative vs. quantitative data, discrete vs. continuous data, and the different levels of measurement. Important figures in the history of statistics mentioned are William Petty, Carl Friedrich Gauss, Ronald Fisher, and James Lind.
1. Statistics is the collection, analysis, interpretation and presentation of numerical data. It has evolved from meaning information useful to the state to being a field that uses methods and techniques to analyze data and make decisions under uncertainty.
2. There are three main categories of statistics: numerical facts systematically arranged, statistics as a subject dealing with methods for analyzing data, and statistics as plural of statistic which refers to values computed from sample data.
3. Statistics is used in pharmaceutical sciences to design clinical studies, summarize and analyze collected data to answer research questions, and interpret and communicate results to regulatory agencies and scientific communities.
Statistics involves collecting, organizing, presenting, analyzing, and interpreting data to make decisions. Descriptive statistics describes characteristics and properties of a group through gathering, organizing, presenting, and describing data. Inferential statistics draws inferences about a large group based on a sample through inductive reasoning and hypothesis testing. The examples provided illustrate common uses of descriptive and inferential statistics.
This document discusses key concepts in statistics including:
- Descriptive statistics involves collecting, organizing and presenting data to describe a situation. Inferential statistics involves making inferences about populations based on samples.
- There are different types of variables (qualitative, quantitative) and levels of measurement (nominal, ordinal, interval, ratio).
- Common data collection methods include surveys conducted by telephone, mail, or in-person interviews. Random sampling and stratified sampling are techniques for selecting samples from populations.
In this chapter you learn:
Definition of Statistics & Identify variables in a statistics.
Types of Statistics
Distinguish b/w quantitative & qualitative variables.
Determine the 4 levels of measurement.
Identify populations & samples.
Distinguish different types of Sampling
kelan nyo isubmit yung assignment no. 7 and 8 nyo nasa slides yun ng stats. isubmit nyo sa akin sa lunes during electromagnetism kasi kukulangin yung class participation nyo sa stats.
This document provides an introduction to statistics, including defining what statistics is, the different types of variables and scales of measurement, and why statistics is important in dentistry. It discusses how statistics can be used for research, understanding medical literature, and informing clinical decision making. Descriptive statistics are used to summarize and describe data, while inferential statistics allow generalizing beyond the sample data to the overall population. Nominal, ordinal, interval, and ratio scales of measurement are explained along with examples. The importance of understanding the scale of measurement is that it determines which statistical tests can appropriately be used for analysis.
This document provides an introduction to statistics, including defining what statistics is, the different types of variables and scales of measurement, and why statistics is important in dentistry. It discusses how statistics can be used for research, understanding medical literature, and informing clinical decision making. Descriptive statistics are used to summarize and describe data, while inferential statistics allow generalizing beyond the sample data to the overall population. Nominal, ordinal, interval, and ratio scales of measurement are explained along with examples. The importance of understanding the scale of measurement is that it determines which statistical tests can appropriately be used for analysis.
This document provides an introduction to statistics, including defining what statistics is, the different types of variables and scales of measurement, and why statistics is important in dentistry. It discusses how statistics can be used for research, understanding medical literature, and informing clinical decision making. Descriptive statistics are used to summarize and describe data, while inferential statistics allow generalizing beyond the sample data to the overall population. Nominal scales name categories, ordinal scales rank order items, interval scales have equal intervals but an arbitrary zero point, and ratio scales have a true zero point where the absence of a trait can be measured.
This document provides an outline for a course on probability and statistics. It begins with an introduction to key concepts like measures of central tendency, dispersion, correlation, and probability distributions. It then lists common probability distributions and hypothesis testing. The document provides examples of how statistics is used in various fields. It also defines key statistical concepts like population and sample, variables, and different scales of measurement. Finally, it discusses data collection methods and ways to represent data through tables and graphs.
This document provides an outline for a course on probability and statistics. It includes an introduction to key statistical concepts like measures of central tendency, dispersion, correlation, probability distributions, and hypothesis testing. Assignments are provided to help students apply these statistical methods to real-world examples from various fields like business, engineering, and the biological sciences. References for further reading on topics in statistics and probability are also listed.
This document provides an outline for a course on probability and statistics. It begins with an introduction to statistics, including definitions and general uses. It then covers various topics that will be taught, such as measures of central tendency, probability, discrete and continuous distributions, and hypothesis testing. References for textbooks are also provided. The document contains sample assignments and examples to illustrate concepts like scales of measurement, data collection methods, and graphical representations of data. It provides instructions for calculating measures of central tendency and examples of frequency distributions and their related graphs.
This document provides an outline for a course on probability and statistics. It begins with an introduction to statistics, including definitions and general uses. It then covers topics like measures of central tendency, probability, discrete and continuous distributions, and hypothesis testing. References for textbooks on the subject are also provided. Assignments include calculating measures of central tendency and constructing frequency distributions from raw data. Various scales of measurement and methods of data collection are defined. Graphical representations like histograms, pie charts, and bar graphs are discussed. Formulas are given for calculating the mean, median, and mode of both grouped and ungrouped data.
This document provides an outline for a course on probability and statistics. It begins with an introduction to statistics, including definitions and general uses. It then covers topics like measures of central tendency, probability, discrete and continuous distributions, and hypothesis testing. References for textbooks on statistics and counterexamples in probability are also provided. Assignments ask students to list contributors to statistics, apply statistics in real life, define independent and dependent variables, and understand scales of measurement. Methods of data collection, tabular and graphical representation of data, and measures of central tendency and location are also discussed.
This document provides an outline for a course on probability and statistics. It begins with an introduction to key concepts like measures of central tendency, dispersion, correlation, and probability distributions. It then lists common probability distributions and the textbook and references used. Later sections define important statistical terms like population, sample, variable types, data collection methods, and ways of presenting data through tables and graphs. It provides examples of how statistics is used and ends with examples of different variable scales.
This document provides an outline for a course on probability and statistics. It begins with an introduction to key concepts like measures of central tendency, dispersion, correlation, and probability distributions. It then lists common probability distributions and the textbook and references used. Later sections define important statistical terms like population, sample, variable types, data collection methods, and ways of presenting data through tables and graphs. It provides examples of each variable scale and ends with assignments for students.
This document provides an introduction to statistics, including definitions, reasons for studying statistics, and the scope and importance of statistics. It discusses how statistics is used in fields like insurance, medicine, administration, banking, agriculture, business, and sciences. It also outlines the main functions of statistics and its branches, including theoretical, descriptive, inferential, and applied statistics. Finally, it covers topics related to data representation, including methods of presenting data through tables, graphs, and diagrams.
This document provides an overview of a lesson on data sources, variables, and measurement scales. The lesson will cover primary and secondary data sources, qualitative and quantitative variables, and nominal, ordinal, interval, and ratio measurement scales. Students will learn to identify data sources, define different variable types, and recognize the appropriate scale of measurement for a given variable. The lesson aims to help students understand how data is collected and analyzed depending on its characteristics.
Recapitulation of Basic Statistical Concepts .pptxFranCis850707
The document provides definitions and explanations of basic statistical concepts. It defines statistics as concerning the collection, organization, analysis, interpretation and presentation of data. It distinguishes between populations, which are entire sets of items from which data is drawn, and samples, which are subsets of populations that are used when a population is too large. It describes descriptive statistics, which describe properties of sample and population data, and inferential statistics, which use descriptive statistics to test hypotheses and draw conclusions about populations from samples.
Data can be facts, figures, measurements, observations, or descriptions from which conclusions can be drawn. It can be quantitative, represented by numbers, or qualitative, represented by descriptive information. Quantitative data can be either discrete, taking certain numerical values, or continuous, able to take any value within a range. A variable is a characteristic that can take on different possible outcomes, and can be either quantitative or qualitative. Statistics deals with analyzing quantitative data from a sample of a population to make inferences.
The document provides an overview of statistics and probability. It defines statistics as the science used to draw conclusions from real data collected through sampling. The document outlines the wide variety of fields that use statistics and describes the nature of the discipline as involving descriptive and inferential statistics. It also provides details on the course structure, learning objectives, exams, and grading.
This document provides an introduction to statistics, including why statistics are studied, applications in business, and key statistical concepts. It discusses descriptive statistics used to organize and summarize data, inferential statistics used to make inferences about populations from samples, and different types of data and variables. It also covers topics like sampling methods, presenting and analyzing qualitative and quantitative data, and scales of measurement. The overall purpose is to introduce foundational statistical concepts.
This document provides an overview of key concepts in statistics including:
- Descriptive statistics which summarize and describe data, and inferential statistics which make predictions based on samples.
- The difference between a population, which is all subjects being studied, and a sample, which is a subset selected from the population.
- Types of variables like qualitative, quantitative, discrete, continuous and different measurement scales.
- Various data collection methods like random, systematic, stratified and cluster sampling.
- The two main types of statistical studies - observational which observes phenomena, and experimental which manipulates variables.
- Common statistical terms like independent and dependent variables and misuses of statistics to mislead.
保密服务圣地亚哥州立大学英文毕业证书影本美国成绩单圣地亚哥州立大学文凭【q微1954292140】办理圣地亚哥州立大学学位证(SDSU毕业证书)毕业证书购买【q微1954292140】帮您解决在美国圣地亚哥州立大学未毕业难题(San Diego State University)文凭购买、毕业证购买、大学文凭购买、大学毕业证购买、买文凭、日韩文凭、英国大学文凭、美国大学文凭、澳洲大学文凭、加拿大大学文凭(q微1954292140)新加坡大学文凭、新西兰大学文凭、爱尔兰文凭、西班牙文凭、德国文凭、教育部认证,买毕业证,毕业证购买,买大学文凭,购买日韩毕业证、英国大学毕业证、美国大学毕业证、澳洲大学毕业证、加拿大大学毕业证(q微1954292140)新加坡大学毕业证、新西兰大学毕业证、爱尔兰毕业证、西班牙毕业证、德国毕业证,回国证明,留信网认证,留信认证办理,学历认证。从而完成就业。圣地亚哥州立大学毕业证办理,圣地亚哥州立大学文凭办理,圣地亚哥州立大学成绩单办理和真实留信认证、留服认证、圣地亚哥州立大学学历认证。学院文凭定制,圣地亚哥州立大学原版文凭补办,扫描件文凭定做,100%文凭复刻。
特殊原因导致无法毕业,也可以联系我们帮您办理相关材料:
1:在圣地亚哥州立大学挂科了,不想读了,成绩不理想怎么办???
2:打算回国了,找工作的时候,需要提供认证《SDSU成绩单购买办理圣地亚哥州立大学毕业证书范本》【Q/WeChat:1954292140】Buy San Diego State University Diploma《正式成绩单论文没过》有文凭却得不到认证。又该怎么办???美国毕业证购买,美国文凭购买,【q微1954292140】美国文凭购买,美国文凭定制,美国文凭补办。专业在线定制美国大学文凭,定做美国本科文凭,【q微1954292140】复制美国San Diego State University completion letter。在线快速补办美国本科毕业证、硕士文凭证书,购买美国学位证、圣地亚哥州立大学Offer,美国大学文凭在线购买。
美国文凭圣地亚哥州立大学成绩单,SDSU毕业证【q微1954292140】办理美国圣地亚哥州立大学毕业证(SDSU毕业证书)【q微1954292140】录取通知书offer在线制作圣地亚哥州立大学offer/学位证毕业证书样本、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作。帮你解决圣地亚哥州立大学学历学位认证难题。
主营项目:
1、真实教育部国外学历学位认证《美国毕业文凭证书快速办理圣地亚哥州立大学办留服认证》【q微1954292140】《论文没过圣地亚哥州立大学正式成绩单》,教育部存档,教育部留服网站100%可查.
2、办理SDSU毕业证,改成绩单《SDSU毕业证明办理圣地亚哥州立大学成绩单购买》【Q/WeChat:1954292140】Buy San Diego State University Certificates《正式成绩单论文没过》,圣地亚哥州立大学Offer、在读证明、学生卡、信封、证明信等全套材料,从防伪到印刷,从水印到钢印烫金,高精仿度跟学校原版100%相同.
3、真实使馆认证(即留学人员回国证明),使馆存档可通过大使馆查询确认.
4、留信网认证,国家专业人才认证中心颁发入库证书,留信网存档可查.
《圣地亚哥州立大学学位证书的英文美国毕业证书办理SDSU办理学历认证书》【q微1954292140】学位证1:1完美还原海外各大学毕业材料上的工艺:水印,阴影底纹,钢印LOGO烫金烫银,LOGO烫金烫银复合重叠。文字图案浮雕、激光镭射、紫外荧光、温感、复印防伪等防伪工艺。
高仿真还原美国文凭证书和外壳,定制美国圣地亚哥州立大学成绩单和信封。毕业证网上可查学历信息SDSU毕业证【q微1954292140】办理美国圣地亚哥州立大学毕业证(SDSU毕业证书)【q微1954292140】学历认证生成授权声明圣地亚哥州立大学offer/学位证文凭购买、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作。帮你解决圣地亚哥州立大学学历学位认证难题。
圣地亚哥州立大学offer/学位证、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作【q微1954292140】Buy San Diego State University Diploma购买美国毕业证,购买英国毕业证,购买澳洲毕业证,购买加拿大毕业证,以及德国毕业证,购买法国毕业证(q微1954292140)购买荷兰毕业证、购买瑞士毕业证、购买日本毕业证、购买韩国毕业证、购买新西兰毕业证、购买新加坡毕业证、购买西班牙毕业证、购买马来西亚毕业证等。包括了本科毕业证,硕士毕业证。
Ad
More Related Content
Similar to Data Analysis and Statistics-skills.docx (20)
In this chapter you learn:
Definition of Statistics & Identify variables in a statistics.
Types of Statistics
Distinguish b/w quantitative & qualitative variables.
Determine the 4 levels of measurement.
Identify populations & samples.
Distinguish different types of Sampling
kelan nyo isubmit yung assignment no. 7 and 8 nyo nasa slides yun ng stats. isubmit nyo sa akin sa lunes during electromagnetism kasi kukulangin yung class participation nyo sa stats.
This document provides an introduction to statistics, including defining what statistics is, the different types of variables and scales of measurement, and why statistics is important in dentistry. It discusses how statistics can be used for research, understanding medical literature, and informing clinical decision making. Descriptive statistics are used to summarize and describe data, while inferential statistics allow generalizing beyond the sample data to the overall population. Nominal, ordinal, interval, and ratio scales of measurement are explained along with examples. The importance of understanding the scale of measurement is that it determines which statistical tests can appropriately be used for analysis.
This document provides an introduction to statistics, including defining what statistics is, the different types of variables and scales of measurement, and why statistics is important in dentistry. It discusses how statistics can be used for research, understanding medical literature, and informing clinical decision making. Descriptive statistics are used to summarize and describe data, while inferential statistics allow generalizing beyond the sample data to the overall population. Nominal, ordinal, interval, and ratio scales of measurement are explained along with examples. The importance of understanding the scale of measurement is that it determines which statistical tests can appropriately be used for analysis.
This document provides an introduction to statistics, including defining what statistics is, the different types of variables and scales of measurement, and why statistics is important in dentistry. It discusses how statistics can be used for research, understanding medical literature, and informing clinical decision making. Descriptive statistics are used to summarize and describe data, while inferential statistics allow generalizing beyond the sample data to the overall population. Nominal scales name categories, ordinal scales rank order items, interval scales have equal intervals but an arbitrary zero point, and ratio scales have a true zero point where the absence of a trait can be measured.
This document provides an outline for a course on probability and statistics. It begins with an introduction to key concepts like measures of central tendency, dispersion, correlation, and probability distributions. It then lists common probability distributions and hypothesis testing. The document provides examples of how statistics is used in various fields. It also defines key statistical concepts like population and sample, variables, and different scales of measurement. Finally, it discusses data collection methods and ways to represent data through tables and graphs.
This document provides an outline for a course on probability and statistics. It includes an introduction to key statistical concepts like measures of central tendency, dispersion, correlation, probability distributions, and hypothesis testing. Assignments are provided to help students apply these statistical methods to real-world examples from various fields like business, engineering, and the biological sciences. References for further reading on topics in statistics and probability are also listed.
This document provides an outline for a course on probability and statistics. It begins with an introduction to statistics, including definitions and general uses. It then covers various topics that will be taught, such as measures of central tendency, probability, discrete and continuous distributions, and hypothesis testing. References for textbooks are also provided. The document contains sample assignments and examples to illustrate concepts like scales of measurement, data collection methods, and graphical representations of data. It provides instructions for calculating measures of central tendency and examples of frequency distributions and their related graphs.
This document provides an outline for a course on probability and statistics. It begins with an introduction to statistics, including definitions and general uses. It then covers topics like measures of central tendency, probability, discrete and continuous distributions, and hypothesis testing. References for textbooks on the subject are also provided. Assignments include calculating measures of central tendency and constructing frequency distributions from raw data. Various scales of measurement and methods of data collection are defined. Graphical representations like histograms, pie charts, and bar graphs are discussed. Formulas are given for calculating the mean, median, and mode of both grouped and ungrouped data.
This document provides an outline for a course on probability and statistics. It begins with an introduction to statistics, including definitions and general uses. It then covers topics like measures of central tendency, probability, discrete and continuous distributions, and hypothesis testing. References for textbooks on statistics and counterexamples in probability are also provided. Assignments ask students to list contributors to statistics, apply statistics in real life, define independent and dependent variables, and understand scales of measurement. Methods of data collection, tabular and graphical representation of data, and measures of central tendency and location are also discussed.
This document provides an outline for a course on probability and statistics. It begins with an introduction to key concepts like measures of central tendency, dispersion, correlation, and probability distributions. It then lists common probability distributions and the textbook and references used. Later sections define important statistical terms like population, sample, variable types, data collection methods, and ways of presenting data through tables and graphs. It provides examples of how statistics is used and ends with examples of different variable scales.
This document provides an outline for a course on probability and statistics. It begins with an introduction to key concepts like measures of central tendency, dispersion, correlation, and probability distributions. It then lists common probability distributions and the textbook and references used. Later sections define important statistical terms like population, sample, variable types, data collection methods, and ways of presenting data through tables and graphs. It provides examples of each variable scale and ends with assignments for students.
This document provides an introduction to statistics, including definitions, reasons for studying statistics, and the scope and importance of statistics. It discusses how statistics is used in fields like insurance, medicine, administration, banking, agriculture, business, and sciences. It also outlines the main functions of statistics and its branches, including theoretical, descriptive, inferential, and applied statistics. Finally, it covers topics related to data representation, including methods of presenting data through tables, graphs, and diagrams.
This document provides an overview of a lesson on data sources, variables, and measurement scales. The lesson will cover primary and secondary data sources, qualitative and quantitative variables, and nominal, ordinal, interval, and ratio measurement scales. Students will learn to identify data sources, define different variable types, and recognize the appropriate scale of measurement for a given variable. The lesson aims to help students understand how data is collected and analyzed depending on its characteristics.
Recapitulation of Basic Statistical Concepts .pptxFranCis850707
The document provides definitions and explanations of basic statistical concepts. It defines statistics as concerning the collection, organization, analysis, interpretation and presentation of data. It distinguishes between populations, which are entire sets of items from which data is drawn, and samples, which are subsets of populations that are used when a population is too large. It describes descriptive statistics, which describe properties of sample and population data, and inferential statistics, which use descriptive statistics to test hypotheses and draw conclusions about populations from samples.
Data can be facts, figures, measurements, observations, or descriptions from which conclusions can be drawn. It can be quantitative, represented by numbers, or qualitative, represented by descriptive information. Quantitative data can be either discrete, taking certain numerical values, or continuous, able to take any value within a range. A variable is a characteristic that can take on different possible outcomes, and can be either quantitative or qualitative. Statistics deals with analyzing quantitative data from a sample of a population to make inferences.
The document provides an overview of statistics and probability. It defines statistics as the science used to draw conclusions from real data collected through sampling. The document outlines the wide variety of fields that use statistics and describes the nature of the discipline as involving descriptive and inferential statistics. It also provides details on the course structure, learning objectives, exams, and grading.
This document provides an introduction to statistics, including why statistics are studied, applications in business, and key statistical concepts. It discusses descriptive statistics used to organize and summarize data, inferential statistics used to make inferences about populations from samples, and different types of data and variables. It also covers topics like sampling methods, presenting and analyzing qualitative and quantitative data, and scales of measurement. The overall purpose is to introduce foundational statistical concepts.
This document provides an overview of key concepts in statistics including:
- Descriptive statistics which summarize and describe data, and inferential statistics which make predictions based on samples.
- The difference between a population, which is all subjects being studied, and a sample, which is a subset selected from the population.
- Types of variables like qualitative, quantitative, discrete, continuous and different measurement scales.
- Various data collection methods like random, systematic, stratified and cluster sampling.
- The two main types of statistical studies - observational which observes phenomena, and experimental which manipulates variables.
- Common statistical terms like independent and dependent variables and misuses of statistics to mislead.
保密服务圣地亚哥州立大学英文毕业证书影本美国成绩单圣地亚哥州立大学文凭【q微1954292140】办理圣地亚哥州立大学学位证(SDSU毕业证书)毕业证书购买【q微1954292140】帮您解决在美国圣地亚哥州立大学未毕业难题(San Diego State University)文凭购买、毕业证购买、大学文凭购买、大学毕业证购买、买文凭、日韩文凭、英国大学文凭、美国大学文凭、澳洲大学文凭、加拿大大学文凭(q微1954292140)新加坡大学文凭、新西兰大学文凭、爱尔兰文凭、西班牙文凭、德国文凭、教育部认证,买毕业证,毕业证购买,买大学文凭,购买日韩毕业证、英国大学毕业证、美国大学毕业证、澳洲大学毕业证、加拿大大学毕业证(q微1954292140)新加坡大学毕业证、新西兰大学毕业证、爱尔兰毕业证、西班牙毕业证、德国毕业证,回国证明,留信网认证,留信认证办理,学历认证。从而完成就业。圣地亚哥州立大学毕业证办理,圣地亚哥州立大学文凭办理,圣地亚哥州立大学成绩单办理和真实留信认证、留服认证、圣地亚哥州立大学学历认证。学院文凭定制,圣地亚哥州立大学原版文凭补办,扫描件文凭定做,100%文凭复刻。
特殊原因导致无法毕业,也可以联系我们帮您办理相关材料:
1:在圣地亚哥州立大学挂科了,不想读了,成绩不理想怎么办???
2:打算回国了,找工作的时候,需要提供认证《SDSU成绩单购买办理圣地亚哥州立大学毕业证书范本》【Q/WeChat:1954292140】Buy San Diego State University Diploma《正式成绩单论文没过》有文凭却得不到认证。又该怎么办???美国毕业证购买,美国文凭购买,【q微1954292140】美国文凭购买,美国文凭定制,美国文凭补办。专业在线定制美国大学文凭,定做美国本科文凭,【q微1954292140】复制美国San Diego State University completion letter。在线快速补办美国本科毕业证、硕士文凭证书,购买美国学位证、圣地亚哥州立大学Offer,美国大学文凭在线购买。
美国文凭圣地亚哥州立大学成绩单,SDSU毕业证【q微1954292140】办理美国圣地亚哥州立大学毕业证(SDSU毕业证书)【q微1954292140】录取通知书offer在线制作圣地亚哥州立大学offer/学位证毕业证书样本、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作。帮你解决圣地亚哥州立大学学历学位认证难题。
主营项目:
1、真实教育部国外学历学位认证《美国毕业文凭证书快速办理圣地亚哥州立大学办留服认证》【q微1954292140】《论文没过圣地亚哥州立大学正式成绩单》,教育部存档,教育部留服网站100%可查.
2、办理SDSU毕业证,改成绩单《SDSU毕业证明办理圣地亚哥州立大学成绩单购买》【Q/WeChat:1954292140】Buy San Diego State University Certificates《正式成绩单论文没过》,圣地亚哥州立大学Offer、在读证明、学生卡、信封、证明信等全套材料,从防伪到印刷,从水印到钢印烫金,高精仿度跟学校原版100%相同.
3、真实使馆认证(即留学人员回国证明),使馆存档可通过大使馆查询确认.
4、留信网认证,国家专业人才认证中心颁发入库证书,留信网存档可查.
《圣地亚哥州立大学学位证书的英文美国毕业证书办理SDSU办理学历认证书》【q微1954292140】学位证1:1完美还原海外各大学毕业材料上的工艺:水印,阴影底纹,钢印LOGO烫金烫银,LOGO烫金烫银复合重叠。文字图案浮雕、激光镭射、紫外荧光、温感、复印防伪等防伪工艺。
高仿真还原美国文凭证书和外壳,定制美国圣地亚哥州立大学成绩单和信封。毕业证网上可查学历信息SDSU毕业证【q微1954292140】办理美国圣地亚哥州立大学毕业证(SDSU毕业证书)【q微1954292140】学历认证生成授权声明圣地亚哥州立大学offer/学位证文凭购买、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作。帮你解决圣地亚哥州立大学学历学位认证难题。
圣地亚哥州立大学offer/学位证、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作【q微1954292140】Buy San Diego State University Diploma购买美国毕业证,购买英国毕业证,购买澳洲毕业证,购买加拿大毕业证,以及德国毕业证,购买法国毕业证(q微1954292140)购买荷兰毕业证、购买瑞士毕业证、购买日本毕业证、购买韩国毕业证、购买新西兰毕业证、购买新加坡毕业证、购买西班牙毕业证、购买马来西亚毕业证等。包括了本科毕业证,硕士毕业证。
Just-in-time: Repetitive production system in which processing and movement of materials and goods occur just as they are needed, usually in small batches
JIT is characteristic of lean production systems
JIT operates with very little “fat”
Philipp Horn has worked in the Business Intelligence area of the Purchasing department of Volkswagen for more than 5 years. He is a front runner in adopting new techniques to understand and improve processes and learned about process mining from a friend, who in turn heard about it at a meet-up where Fluxicon had participated with other startups.
Philipp warns that you need to be careful not to jump to conclusions. For example, in a discovered process model it is easy to say that this process should be simpler here and there, but often there are good reasons for these exceptions today. To distinguish what is necessary and what could be actually improved requires both process knowledge and domain expertise on a detailed level.
Dimension Data has over 30,000 employees in nine operating regions spread over all continents. They provide services from infrastructure sales to IT outsourcing for multinationals. As the Global Process Owner at Dimension Data, Jan Vermeulen is responsible for the standardization of the global IT services processes.
Jan shares his journey of establishing process mining as a methodology to improve process performance and compliance, to grow their business, and to increase the value in their operations. These three pillars form the foundation of Dimension Data's business case for process mining.
Jan shows examples from each of the three pillars and shares what he learned on the way. The growth pillar is particularly new and interesting, because Dimension Data was able to compete in a RfP process for a new customer by providing a customized offer after analyzing the customer's data with process mining.
Lalit Wangikar, a partner at CKM Advisors, is an experienced strategic consultant and analytics expert. He started looking for data driven ways of conducting process discovery workshops. When he read about process mining the first time around, about 2 years ago, the first feeling was: “I wish I knew of this while doing the last several projects!".
Interviews are subject to all the whims human recollection is subject to: specifically, recency, simplification and self preservation. Interview-based process discovery, therefore, leaves out a lot of “outliers” that usually end up being one of the biggest opportunity area. Process mining, in contrast, provides an unbiased, fact-based, and a very comprehensive understanding of actual process execution.
Mieke Jans is a Manager at Deloitte Analytics Belgium. She learned about process mining from her PhD supervisor while she was collaborating with a large SAP-using company for her dissertation.
Mieke extended her research topic to investigate the data availability of process mining data in SAP and the new analysis possibilities that emerge from it. It took her 8-9 months to find the right data and prepare it for her process mining analysis. She needed insights from both process owners and IT experts. For example, one person knew exactly how the procurement process took place at the front end of SAP, and another person helped her with the structure of the SAP-tables. She then combined the knowledge of these different persons.
2025年新版意大利毕业证布鲁诺马代尔纳嘉雷迪米音乐学院文凭【q微1954292140】办理布鲁诺马代尔纳嘉雷迪米音乐学院毕业证(Rimini毕业证书)2025年新版毕业证书【q微1954292140】布鲁诺马代尔纳嘉雷迪米音乐学院offer/学位证、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作【q微1954292140】Buy Conservatorio di Musica "B.Maderna G.Lettimi" Diploma购买美国毕业证,购买英国毕业证,购买澳洲毕业证,购买加拿大毕业证,以及德国毕业证,购买法国毕业证(q微1954292140)购买荷兰毕业证、购买瑞士毕业证、购买日本毕业证、购买韩国毕业证、购买新西兰毕业证、购买新加坡毕业证、购买西班牙毕业证、购买马来西亚毕业证等。包括了本科毕业证,硕士毕业证。
主营项目:
1、真实教育部国外学历学位认证《意大利毕业文凭证书快速办理布鲁诺马代尔纳嘉雷迪米音乐学院毕业证定购》【q微1954292140】《论文没过布鲁诺马代尔纳嘉雷迪米音乐学院正式成绩单》,教育部存档,教育部留服网站100%可查.
2、办理Rimini毕业证,改成绩单《Rimini毕业证明办理布鲁诺马代尔纳嘉雷迪米音乐学院办理文凭》【Q/WeChat:1954292140】Buy Conservatorio di Musica "B.Maderna G.Lettimi" Certificates《正式成绩单论文没过》,布鲁诺马代尔纳嘉雷迪米音乐学院Offer、在读证明、学生卡、信封、证明信等全套材料,从防伪到印刷,从水印到钢印烫金,高精仿度跟学校原版100%相同.
3、真实使馆认证(即留学人员回国证明),使馆存档可通过大使馆查询确认.
4、留信网认证,国家专业人才认证中心颁发入库证书,留信网存档可查.
《布鲁诺马代尔纳嘉雷迪米音乐学院留服认证意大利毕业证书办理Rimini文凭不见了怎么办》【q微1954292140】学位证1:1完美还原海外各大学毕业材料上的工艺:水印,阴影底纹,钢印LOGO烫金烫银,LOGO烫金烫银复合重叠。文字图案浮雕、激光镭射、紫外荧光、温感、复印防伪等防伪工艺。
高仿真还原意大利文凭证书和外壳,定制意大利布鲁诺马代尔纳嘉雷迪米音乐学院成绩单和信封。毕业证定制Rimini毕业证【q微1954292140】办理意大利布鲁诺马代尔纳嘉雷迪米音乐学院毕业证(Rimini毕业证书)【q微1954292140】学位证书制作代办流程布鲁诺马代尔纳嘉雷迪米音乐学院offer/学位证成绩单激光标、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作。帮你解决布鲁诺马代尔纳嘉雷迪米音乐学院学历学位认证难题。
意大利文凭布鲁诺马代尔纳嘉雷迪米音乐学院成绩单,Rimini毕业证【q微1954292140】办理意大利布鲁诺马代尔纳嘉雷迪米音乐学院毕业证(Rimini毕业证书)【q微1954292140】安全可靠的布鲁诺马代尔纳嘉雷迪米音乐学院offer/学位证办理原版成绩单、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作。帮你解决布鲁诺马代尔纳嘉雷迪米音乐学院学历学位认证难题。
意大利文凭购买,意大利文凭定制,意大利文凭补办。专业在线定制意大利大学文凭,定做意大利本科文凭,【q微1954292140】复制意大利Conservatorio di Musica "B.Maderna G.Lettimi" completion letter。在线快速补办意大利本科毕业证、硕士文凭证书,购买意大利学位证、布鲁诺马代尔纳嘉雷迪米音乐学院Offer,意大利大学文凭在线购买。
如果您在英、加、美、澳、欧洲等留学过程中或回国后:
1、在校期间因各种原因未能顺利毕业《Rimini成绩单工艺详解》【Q/WeChat:1954292140】《Buy Conservatorio di Musica "B.Maderna G.Lettimi" Transcript快速办理布鲁诺马代尔纳嘉雷迪米音乐学院教育部学历认证书毕业文凭证书》,拿不到官方毕业证;
2、面对父母的压力,希望尽快拿到;
3、不清楚认证流程以及材料该如何准备;
4、回国时间很长,忘记办理;
5、回国马上就要找工作《正式成绩单布鲁诺马代尔纳嘉雷迪米音乐学院文凭详解细节》【q微1954292140】《研究生文凭Rimini毕业证详解细节》办给用人单位看;
6、企事业单位必须要求办理的;
7、需要报考公务员、购买免税车、落转户口、申请留学生创业基金。
【q微1954292140】帮您解决在意大利布鲁诺马代尔纳嘉雷迪米音乐学院未毕业难题(Conservatorio di Musica "B.Maderna G.Lettimi" )文凭购买、毕业证购买、大学文凭购买、大学毕业证购买、买文凭、日韩文凭、英国大学文凭、美国大学文凭、澳洲大学文凭、加拿大大学文凭(q微1954292140)新加坡大学文凭、新西兰大学文凭、爱尔兰文凭、西班牙文凭、德国文凭、教育部认证,买毕业证,毕业证购买,买大学文凭,购买日韩毕业证、英国大学毕业证、美国大学毕业证、澳洲大学毕业证、加拿大大学毕业证(q微1954292140)新加坡大学毕业证、新西兰大学毕业证、爱尔兰毕业证、西班牙毕业证、德国毕业证,回国证明,留信网认证,留信认证办理,学历认证。从而完成就业。布鲁诺马代尔纳嘉雷迪米音乐学院毕业证办理,布鲁诺马代尔纳嘉雷迪米音乐学院文凭办理,布鲁诺马代尔纳嘉雷迪米音乐学院成绩单办理和真实留信认证、留服认证、布鲁诺马代尔纳嘉雷迪米音乐学院学历认证。学院文凭定制,布鲁诺马代尔纳嘉雷迪米音乐学院原版文凭补办,扫描件文凭定做,100%文凭复刻。
特殊原因导致无法毕业,也可以联系我们帮您办理相关材料:
1:在布鲁诺马代尔纳嘉雷迪米音乐学院挂科了,不想读了,成绩不理想怎么办???
2:打算回国了,找工作的时候,需要提供认证《Rimini成绩单购买办理布鲁诺马代尔纳嘉雷迪米音乐学院毕业证书范本》【Q/WeChat:1954292140】Buy Conservatorio di Musica "B.Maderna G.Lettimi" Diploma《正式成绩单论文没过》有文凭却得不到认证。又该怎么办???意大利毕业证购买,意大利文凭购买,
3:回国了找工作没有布鲁诺马代尔纳嘉雷迪米音乐学院文凭怎么办?有本科却要求硕士又怎么办?
Johan Lammers from Statistics Netherlands has been a business analyst and statistical researcher for almost 30 years. In their business, processes have two faces: You can produce statistics about processes and processes are needed to produce statistics. As a government-funded office, the efficiency and the effectiveness of their processes is important to spend that public money well.
Johan takes us on a journey of how official statistics are made. One way to study dynamics in statistics is to take snapshots of data over time. A special way is the panel survey, where a group of cases is followed over time. He shows how process mining could test certain hypotheses much faster compared to statistical tools like SPSS.
vMix Pro Crack + Serial Number Torrent free Downloadeyeskye547
vMix is a comprehensive live 2025 video production and streaming software designed for Windows PCs, catering to a wide range of users from hobbyists to professional broadcasters. It enables users to create, mix, switch, record, and stream high-quality live productions with ease.
⬇️⬇️COPY & PASTE IN BROWSER TO DOWNLOAD⬇️⬇️
https://precrackfiles.com/download-setup/
Zig Websoftware creates process management software for housing associations. Their workflow solution is used by the housing associations to, for instance, manage the process of finding and on-boarding a new tenant once the old tenant has moved out of an apartment.
Paul Kooij shows how they could help their customer WoonFriesland to improve the housing allocation process by analyzing the data from Zig's platform. Every day that a rental property is vacant costs the housing association money.
But why does it take so long to find new tenants? For WoonFriesland this was a black box. Paul explains how he used process mining to uncover hidden opportunities to reduce the vacancy time by 4,000 days within just the first six months.
This presentation provides a comprehensive introduction to Microsoft Excel, covering essential skills for beginners and intermediate users. We will explore key features, formulas, functions, and data analysis techniques.
How to regulate and control your it-outsourcing provider with process miningProcess mining Evangelist
Oliver Wildenstein is an IT process manager at MLP. As in many other IT departments, he works together with external companies who perform supporting IT processes for his organization. With process mining he found a way to monitor these outsourcing providers.
Rather than having to believe the self-reports from the provider, process mining gives him a controlling mechanism for the outsourced process. Because such analyses are usually not foreseen in the initial outsourcing contract, companies often have to pay extra to get access to the data for their own process.
How to regulate and control your it-outsourcing provider with process miningProcess mining Evangelist
Ad
Data Analysis and Statistics-skills.docx
1. FREE Gift included:
Watch – Basic to Advanced Level Excel Training
https://www.youtube.com/watch?v=1PepfurPwmU
Data Analysis and Statistics
Key terms
Statistics
Data
Data Collection
Descriptive Statistics
Inferential Statistics
Discrete Data
Continuous Data
Frequency Distribution
What is Statistics?
Statistics is a science that involves examining and using data. Statisticians
collect data, analyze and interpret it and then put it in a form so that it can
be presented or used. Statistics are used in almost every field in order to
make decisions or to conduct research.
2. Statistics is the branch of mathematics that deals with data. Data (technically
a plural word; the singular is ‘datum’) is a collection of values. For most of
what we do, it will be numerical data (such as the inflation rate, the number
of bees in a colony, or the marks in a class test), but it can also take other
forms (such as the political party a voter intends to vote for, the football
team they support, and so on).
A collection of data is often referred to as a data set or set of data¸ but other
words such as a list or simply collection are also often used. Don’t worry too
much about the words, just understand that we are referring to a collection
of values.
What is Data?
Data is the collected facts. The individual pieces of fact recorded for the purpose
of analysis is called Data.
Data collection
Data collection is all about how the actual data is collected. There are
however significant issues to consider when actually collecting data. For
data such as marks in a class test, this is fairly straightforward. Each student
has a defined mark associated with them, so the marks are simply collected
together to make the data set.
Sometimes, data is harder to collect. Counting the number of bees in a
colony isn’t easy, because they move and fly around; you may have to
approximate in such cases.
Also, if you are collecting data, you need to be careful where you get it from.
For example, suppose you want to conduct a poll on who people plan to
vote for in an election. You can’t realistically ask everyone in the whole
3. country (the population), so you have to choose a representative sample of
people. This isn’t as easy as it sounds. In the mid 20th century, for example,
polls were sometimes carried out by randomly calling people in the
telephone directory. This sounds representative, but in those days only the
richer people
had telephones, and so you were asking only a particular section of society,
who might well be more inclined to vote for one party rather than other. The
same issue may apply with doing a poll by email or social media platforms
today.
So, there are issues in the collection of the data; you need to make sure that
the data has been collected fairly before you go on to deal with it, and try to
present it and make conclusions.
Types of Data
1. Qualitative Data
Data in the form of Words
No tool used to measure it
Does not describe quantities or amounts
2. Quantitative Data
Describes quantities expressed numerically
There is an objective way of measuring it
How Data is Collected
1. Primary Data
Data collected for the first time by an investigator for a specific purpose.
No statistical Operations have been performed
2. Secondary Data
Data sourced from somewhere
Statistical analyses have already been performed on it.
4. The Concepts of Variables
What are Variables?
Attributes of an object under study.
Variables are data Items
Types of Variables by Data Type
Variable have types depending on the data they contain.
o Quantitative Variables e.g Age
o Qualitative Variables e.g Quality of an item.
Quantitative Variables
Discrete variables: counts of individual items e.g number of people. For
example, you cannot have 2.5 people. It is either 2 or 3 people.
Continuous variables: Measurements of continuous values e.g Age,
distance or volume. These are values that are on continuous scales. For
example you can have distance which can be 34.5 km.
Qualitative Variables
Also known as categorical or grouping variables
For example, for Gender (Male or Female), Marital Status and other.
You cannot do mathematical calculation on categorical data.
Types of Variables by Role
Independent Variables
The variable being thought of as the cause. Variable that is affecting
the outcome of another variable.
Provides us with data about factors that affect a certain outcome.
5. They are also known as Predictors variable.
In the principle of cause and effect. The independent variables
represent the Cause.
Dependent Variables
The variable is being thought of as an effect.
The values of this variable are expected to change based on what
happens to another variable.
These are Outcome Variables.
Measurement Levels in Data Analysis
This is the relationship among values within a variable.
It is very important for deciding what kind of analyses you can run
They come from the concept of types of variables (qualitative or
quantitative)
Different measures of variable:
o Qualitative Variable
Nominal Variables:
Variables where the categories do not have a logical order e.g
Marital Status can’t be arranged in order.
Nominal come from the phrase “name only”
E.g Sex, Marital Status, Race, Colour
Ordinal Variables:
Variables where the categories have logical order.
The word ordinal comes from the word “order”
Each category or possible value is a level of the variable
e.g. satisfaction level, level of education, level of
agreement, continuous variables expressed as groups;
something like age group or classes of age.
Order like education can be grouped in Primary Education,
Secondary Education and Tertiary Education.
6. Ordinal can also be captured as rating level satisfaction from
scale 1 to 10.
Binary Variables:
Variables with only 2 categories; True or False, Yes or No, On
or Off.
o Quantitative Variables
Ratio variables:
These are continuous variables with an absolute zero point.
For example, for number of people an absolute zero mean there are
no people.
Values have quality of intervals.
Interval variables:
Values have equality of intervals
The ratio between 2 numbers is not meaningful
There is no absolute zero, an example here is measuring the decree
of temperature – a zero degree Celsius doesn’t mean there is
absent of temperature level.
Population vs Sample
Study: Differences between using soft copy vs hard copy study materials on
education performance at a university.
Population: Let’s say you have 3000 students in your university that you want
to study. Those 3000 students are the population of the University.
o A Population is a complete group of people, objects or items you are trying
to study.
Sample: Although you have 3000 students as population of the school, you
may not be able to study all the 3000 so you may decide to take a subset or
few of the students to study. The subset taken is called a Sample.
o A Sample is a smaller group of people or objects taken from the population.
o This group will actually participate in your study e.g by responding to a
questionnaire.
o Statistics give us the power to generalize to the population.
7. Branches of Statistics
1. Descriptive Statistics:
Numbers used to describe or summarize the sample data
Aimed at describing the data at hand; not the entire population but the
sample data.
Use statistical tools such as Mean (Average), Median, Standard Deviation,
Variance etc. We also use Chart to represent such data.
2. Inferential Statistics:
Uses data from the sample to make generalizations about the population
from where the sample was taken.
Example of Inferential test are Correlations, T-test, Regression analysis