The class consists of 8 classes taught by two instructors. There are 3 take-home assignments due in classes 3, 5, and 7. A final take-home exam is assigned in class 8. The default dataset contains data from 60 subjects across 3-4 groups with different variable types. Students can also bring their own de-identified datasets. Special topics may include microarray analysis, pattern recognition, machine learning, and time series analysis.
This document provides an overview of basic statistics concepts. It defines statistics as the science of collecting, analyzing, and interpreting data. There are two main types of statistics: descriptive statistics which summarize data, and inferential statistics which make predictions from data. Key concepts discussed include variables, frequency distributions, measures of center such as mean and median, measures of variability such as range and standard deviation, and methods of presenting data graphically and numerically.
This document provides an overview of basic statistics concepts. It defines statistics as the science of collecting, analyzing, and interpreting data. There are two main types of statistics: descriptive statistics which summarize data, and inferential statistics which make predictions from data. Key concepts discussed include variables, frequency distributions, measures of center such as mean and median, measures of variability such as range and standard deviation, and methods of presenting data graphically and numerically.
This document provides an overview of biostatistics, including definitions, concepts, and methods. It defines statistics as the science of collecting, organizing, summarizing, analyzing, and interpreting data. Various statistical concepts are explained, such as variables, distributions, frequency distributions, measures of center and variability. Graphical and numerical methods for presenting data are described, including histograms, box plots, mean, median, and standard deviation. Methods for summarizing categorical and numerical variable data are also outlined.
This document defines statistics and its uses in community medicine. It outlines the objectives of describing statistics, summarizing data in tables and graphs, and calculating measures of central tendency and dispersion. Various data types, sources, and methods of presentation including tables and graphs are described. Common measures used to summarize data like percentile, measures of central tendency, and measures of dispersion are defined.
This document discusses descriptive statistics and provides information on various descriptive statistics measures. It defines descriptive statistics as means of organizing and summarizing observations. It describes different types of descriptive statistics including measures of central tendency such as mean, median and mode, and measures of dispersion such as range, variance, standard deviation and interquartile range. Examples are provided to demonstrate how to calculate mean, median and mode from a data set. Additional measures like percentiles, quartiles, boxplots, skewness and kurtosis are also explained.
This document provides an overview of basic statistics concepts. It defines statistics as the science of collecting, presenting, analyzing, and reasonably interpreting data. Descriptive statistics are used to summarize and organize data through methods like tables, graphs, and descriptive values, while inferential statistics allow researchers to make general conclusions about populations based on sample data. Variables can be either categorical or quantitative, and their distributions and presentations are discussed.
This document provides an overview of descriptive statistics and statistical concepts. It discusses topics such as data collection, organization, analysis, interpretation and presentation. It also covers frequency distributions, measures of central tendency (mean, median, mode), measures of variability (range, variance, standard deviation), and hypothesis testing. Hypothesis testing involves forming a null hypothesis and alternative hypothesis, and using statistical tests to either reject or fail to reject the null hypothesis based on sample data. Common statistical tests include ones for comparing means, variances or proportions.
Univariate, bivariate analysis, hypothesis testing, chi squarekongara
This document provides an introduction to data analysis. It discusses various topics related to measurement and types of data, including univariate and bivariate analysis. For univariate analysis, it describes descriptive statistics such as mean, median, mode, variance, and standard deviation. It also discusses data distributions and different measurement scales. For bivariate analysis, it introduces cross-tabulation and chi-square tests to examine relationships between two variables. Cross-tabulation allows looking at associations between variables through frequencies and percentages in tables, while chi-square can be used to test hypotheses about relationships and determine statistical significance.
This document discusses statistical procedures and their applications. It defines key statistical terminology like population, sample, parameter, and variable. It describes the two main types of statistics - descriptive and inferential statistics. Descriptive statistics summarize and describe data through measures of central tendency (mean, median, mode), dispersion, frequency, and position. The mean is the average value, the median is the middle value, and the mode is the most frequent value in a data set. Descriptive statistics help understand the characteristics of a sample or small population.
This document provides an overview of biostatistics. It defines biostatistics as the branch of statistics dealing with biological and medical data, especially relating to humans. Some key points covered include:
- Descriptive statistics are used to describe data through methods like graphs and quantitative measures. Inferential statistics are used to characterize populations based on sample results.
- Biostatistics applies statistical techniques to collect, analyze, and interpret data from biological studies and health/medical research. It is used for tasks like evaluating vaccine effectiveness and informing public health priorities.
- Common analyses in biostatistics include measures of central tendency like the mean, median, and mode to summarize data, and measures of dispersion to quantify variation. Frequency distributions are
This document provides an introduction to medical statistics and presenting data in tables and graphs. It discusses the main methods of data presentation including tabular, graphical, and mathematical presentation. For tabular presentation, it describes the characteristics and types of tables including simple, frequency distribution, and cumulative frequency tables. The main types of graphs covered are bar charts, histograms, frequency polygons, line diagrams, and pie charts. It also discusses measures of central tendency including mean, median and mode, as well as measures of dispersion like range, mean deviation, variance and standard deviation.
This document provides an overview of basic statistics concepts including descriptive statistics, measures of central tendency, variability, sampling, and distributions. It defines key terms like mean, median, mode, range, standard deviation, variance, and quantiles. Examples are provided to demonstrate how to calculate and interpret these common statistical measures.
This document provides an overview of descriptive statistics used in cardiovascular research. Descriptive statistics summarize and describe data through calculations of central tendency, dispersion, and shape. They are used to analyze variables that are discrete (categorical nominal and ordinal) or continuous. Common descriptive statistics include mean, median, mode, range, variance, standard deviation, quartiles, interquartile range, skewness, and kurtosis. Graphs such as dot plots, box plots, and histograms can complement tabular descriptive statistics to display patterns in the data. Univariate analysis examines one variable at a time to understand its distribution, central tendency, and dispersion.
Basic Statistical Descriptions of Data.pptxAnusuya123
This document provides an overview of 7 basic statistical concepts for data science: 1) descriptive statistics such as mean, mode, median, and standard deviation, 2) measures of variability like variance and range, 3) correlation, 4) probability distributions, 5) regression, 6) normal distribution, and 7) types of bias. Descriptive statistics are used to summarize data, variability measures dispersion, correlation measures relationships between variables, and probability distributions specify likelihoods of events. Regression models relationships, normal distribution is often assumed, and biases can influence analyses.
Wynberg girls high-Jade Gibson-maths-data analysis statisticsWynberg Girls High
The document discusses different types of data and methods for analyzing and displaying data. It describes quantitative and qualitative data, discrete and continuous data. It also explains various methods for interpreting data including pictorial methods like graphs and arithmetic methods like measures of central tendency and dispersion. Specific graphs and measures discussed include histograms, bar graphs, mean, median, mode, range, percentiles, quartiles, and interquartile range. The document also cautions about potential ways that graphs and statistics can be misleading.
This document discusses various statistical methods used to organize and interpret data. It describes descriptive statistics, which summarize and simplify data through measures of central tendency like mean, median, and mode, and measures of variability like range and standard deviation. Frequency distributions are presented through tables, graphs, and other visual displays to organize raw data into meaningful categories.
This document provides an overview of basic statistical concepts for bio science students. It defines measures of central tendency including mean, median, and mode. It also discusses measures of dispersion like range and standard deviation. Common probability distributions such as binomial, Poisson, and normal distributions are explained. Hypothesis testing concepts like p-values and types of statistical tests for different types of data like t-tests for continuous variables and chi-square tests for categorical data are summarized along with examples.
Basic Statistical descriptions of Data.pptxswarna sudha
In data analysis, basic statistical descriptions help summarize, understand, and interpret datasets. These descriptions provide key insights into the data's central tendency, dispersion, and shape, making it easier to grasp underlying patterns and trends.
保密服务圣地亚哥州立大学英文毕业证书影本美国成绩单圣地亚哥州立大学文凭【q微1954292140】办理圣地亚哥州立大学学位证(SDSU毕业证书)毕业证书购买【q微1954292140】帮您解决在美国圣地亚哥州立大学未毕业难题(San Diego State University)文凭购买、毕业证购买、大学文凭购买、大学毕业证购买、买文凭、日韩文凭、英国大学文凭、美国大学文凭、澳洲大学文凭、加拿大大学文凭(q微1954292140)新加坡大学文凭、新西兰大学文凭、爱尔兰文凭、西班牙文凭、德国文凭、教育部认证,买毕业证,毕业证购买,买大学文凭,购买日韩毕业证、英国大学毕业证、美国大学毕业证、澳洲大学毕业证、加拿大大学毕业证(q微1954292140)新加坡大学毕业证、新西兰大学毕业证、爱尔兰毕业证、西班牙毕业证、德国毕业证,回国证明,留信网认证,留信认证办理,学历认证。从而完成就业。圣地亚哥州立大学毕业证办理,圣地亚哥州立大学文凭办理,圣地亚哥州立大学成绩单办理和真实留信认证、留服认证、圣地亚哥州立大学学历认证。学院文凭定制,圣地亚哥州立大学原版文凭补办,扫描件文凭定做,100%文凭复刻。
特殊原因导致无法毕业,也可以联系我们帮您办理相关材料:
1:在圣地亚哥州立大学挂科了,不想读了,成绩不理想怎么办???
2:打算回国了,找工作的时候,需要提供认证《SDSU成绩单购买办理圣地亚哥州立大学毕业证书范本》【Q/WeChat:1954292140】Buy San Diego State University Diploma《正式成绩单论文没过》有文凭却得不到认证。又该怎么办???美国毕业证购买,美国文凭购买,【q微1954292140】美国文凭购买,美国文凭定制,美国文凭补办。专业在线定制美国大学文凭,定做美国本科文凭,【q微1954292140】复制美国San Diego State University completion letter。在线快速补办美国本科毕业证、硕士文凭证书,购买美国学位证、圣地亚哥州立大学Offer,美国大学文凭在线购买。
美国文凭圣地亚哥州立大学成绩单,SDSU毕业证【q微1954292140】办理美国圣地亚哥州立大学毕业证(SDSU毕业证书)【q微1954292140】录取通知书offer在线制作圣地亚哥州立大学offer/学位证毕业证书样本、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作。帮你解决圣地亚哥州立大学学历学位认证难题。
主营项目:
1、真实教育部国外学历学位认证《美国毕业文凭证书快速办理圣地亚哥州立大学办留服认证》【q微1954292140】《论文没过圣地亚哥州立大学正式成绩单》,教育部存档,教育部留服网站100%可查.
2、办理SDSU毕业证,改成绩单《SDSU毕业证明办理圣地亚哥州立大学成绩单购买》【Q/WeChat:1954292140】Buy San Diego State University Certificates《正式成绩单论文没过》,圣地亚哥州立大学Offer、在读证明、学生卡、信封、证明信等全套材料,从防伪到印刷,从水印到钢印烫金,高精仿度跟学校原版100%相同.
3、真实使馆认证(即留学人员回国证明),使馆存档可通过大使馆查询确认.
4、留信网认证,国家专业人才认证中心颁发入库证书,留信网存档可查.
《圣地亚哥州立大学学位证书的英文美国毕业证书办理SDSU办理学历认证书》【q微1954292140】学位证1:1完美还原海外各大学毕业材料上的工艺:水印,阴影底纹,钢印LOGO烫金烫银,LOGO烫金烫银复合重叠。文字图案浮雕、激光镭射、紫外荧光、温感、复印防伪等防伪工艺。
高仿真还原美国文凭证书和外壳,定制美国圣地亚哥州立大学成绩单和信封。毕业证网上可查学历信息SDSU毕业证【q微1954292140】办理美国圣地亚哥州立大学毕业证(SDSU毕业证书)【q微1954292140】学历认证生成授权声明圣地亚哥州立大学offer/学位证文凭购买、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作。帮你解决圣地亚哥州立大学学历学位认证难题。
圣地亚哥州立大学offer/学位证、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作【q微1954292140】Buy San Diego State University Diploma购买美国毕业证,购买英国毕业证,购买澳洲毕业证,购买加拿大毕业证,以及德国毕业证,购买法国毕业证(q微1954292140)购买荷兰毕业证、购买瑞士毕业证、购买日本毕业证、购买韩国毕业证、购买新西兰毕业证、购买新加坡毕业证、购买西班牙毕业证、购买马来西亚毕业证等。包括了本科毕业证,硕士毕业证。
Ad
More Related Content
Similar to Introduction to statistics covering the basics (20)
This document provides an overview of basic statistics concepts. It defines statistics as the science of collecting, presenting, analyzing, and reasonably interpreting data. Descriptive statistics are used to summarize and organize data through methods like tables, graphs, and descriptive values, while inferential statistics allow researchers to make general conclusions about populations based on sample data. Variables can be either categorical or quantitative, and their distributions and presentations are discussed.
This document provides an overview of descriptive statistics and statistical concepts. It discusses topics such as data collection, organization, analysis, interpretation and presentation. It also covers frequency distributions, measures of central tendency (mean, median, mode), measures of variability (range, variance, standard deviation), and hypothesis testing. Hypothesis testing involves forming a null hypothesis and alternative hypothesis, and using statistical tests to either reject or fail to reject the null hypothesis based on sample data. Common statistical tests include ones for comparing means, variances or proportions.
Univariate, bivariate analysis, hypothesis testing, chi squarekongara
This document provides an introduction to data analysis. It discusses various topics related to measurement and types of data, including univariate and bivariate analysis. For univariate analysis, it describes descriptive statistics such as mean, median, mode, variance, and standard deviation. It also discusses data distributions and different measurement scales. For bivariate analysis, it introduces cross-tabulation and chi-square tests to examine relationships between two variables. Cross-tabulation allows looking at associations between variables through frequencies and percentages in tables, while chi-square can be used to test hypotheses about relationships and determine statistical significance.
This document discusses statistical procedures and their applications. It defines key statistical terminology like population, sample, parameter, and variable. It describes the two main types of statistics - descriptive and inferential statistics. Descriptive statistics summarize and describe data through measures of central tendency (mean, median, mode), dispersion, frequency, and position. The mean is the average value, the median is the middle value, and the mode is the most frequent value in a data set. Descriptive statistics help understand the characteristics of a sample or small population.
This document provides an overview of biostatistics. It defines biostatistics as the branch of statistics dealing with biological and medical data, especially relating to humans. Some key points covered include:
- Descriptive statistics are used to describe data through methods like graphs and quantitative measures. Inferential statistics are used to characterize populations based on sample results.
- Biostatistics applies statistical techniques to collect, analyze, and interpret data from biological studies and health/medical research. It is used for tasks like evaluating vaccine effectiveness and informing public health priorities.
- Common analyses in biostatistics include measures of central tendency like the mean, median, and mode to summarize data, and measures of dispersion to quantify variation. Frequency distributions are
This document provides an introduction to medical statistics and presenting data in tables and graphs. It discusses the main methods of data presentation including tabular, graphical, and mathematical presentation. For tabular presentation, it describes the characteristics and types of tables including simple, frequency distribution, and cumulative frequency tables. The main types of graphs covered are bar charts, histograms, frequency polygons, line diagrams, and pie charts. It also discusses measures of central tendency including mean, median and mode, as well as measures of dispersion like range, mean deviation, variance and standard deviation.
This document provides an overview of basic statistics concepts including descriptive statistics, measures of central tendency, variability, sampling, and distributions. It defines key terms like mean, median, mode, range, standard deviation, variance, and quantiles. Examples are provided to demonstrate how to calculate and interpret these common statistical measures.
This document provides an overview of descriptive statistics used in cardiovascular research. Descriptive statistics summarize and describe data through calculations of central tendency, dispersion, and shape. They are used to analyze variables that are discrete (categorical nominal and ordinal) or continuous. Common descriptive statistics include mean, median, mode, range, variance, standard deviation, quartiles, interquartile range, skewness, and kurtosis. Graphs such as dot plots, box plots, and histograms can complement tabular descriptive statistics to display patterns in the data. Univariate analysis examines one variable at a time to understand its distribution, central tendency, and dispersion.
Basic Statistical Descriptions of Data.pptxAnusuya123
This document provides an overview of 7 basic statistical concepts for data science: 1) descriptive statistics such as mean, mode, median, and standard deviation, 2) measures of variability like variance and range, 3) correlation, 4) probability distributions, 5) regression, 6) normal distribution, and 7) types of bias. Descriptive statistics are used to summarize data, variability measures dispersion, correlation measures relationships between variables, and probability distributions specify likelihoods of events. Regression models relationships, normal distribution is often assumed, and biases can influence analyses.
Wynberg girls high-Jade Gibson-maths-data analysis statisticsWynberg Girls High
The document discusses different types of data and methods for analyzing and displaying data. It describes quantitative and qualitative data, discrete and continuous data. It also explains various methods for interpreting data including pictorial methods like graphs and arithmetic methods like measures of central tendency and dispersion. Specific graphs and measures discussed include histograms, bar graphs, mean, median, mode, range, percentiles, quartiles, and interquartile range. The document also cautions about potential ways that graphs and statistics can be misleading.
This document discusses various statistical methods used to organize and interpret data. It describes descriptive statistics, which summarize and simplify data through measures of central tendency like mean, median, and mode, and measures of variability like range and standard deviation. Frequency distributions are presented through tables, graphs, and other visual displays to organize raw data into meaningful categories.
This document provides an overview of basic statistical concepts for bio science students. It defines measures of central tendency including mean, median, and mode. It also discusses measures of dispersion like range and standard deviation. Common probability distributions such as binomial, Poisson, and normal distributions are explained. Hypothesis testing concepts like p-values and types of statistical tests for different types of data like t-tests for continuous variables and chi-square tests for categorical data are summarized along with examples.
Basic Statistical descriptions of Data.pptxswarna sudha
In data analysis, basic statistical descriptions help summarize, understand, and interpret datasets. These descriptions provide key insights into the data's central tendency, dispersion, and shape, making it easier to grasp underlying patterns and trends.
保密服务圣地亚哥州立大学英文毕业证书影本美国成绩单圣地亚哥州立大学文凭【q微1954292140】办理圣地亚哥州立大学学位证(SDSU毕业证书)毕业证书购买【q微1954292140】帮您解决在美国圣地亚哥州立大学未毕业难题(San Diego State University)文凭购买、毕业证购买、大学文凭购买、大学毕业证购买、买文凭、日韩文凭、英国大学文凭、美国大学文凭、澳洲大学文凭、加拿大大学文凭(q微1954292140)新加坡大学文凭、新西兰大学文凭、爱尔兰文凭、西班牙文凭、德国文凭、教育部认证,买毕业证,毕业证购买,买大学文凭,购买日韩毕业证、英国大学毕业证、美国大学毕业证、澳洲大学毕业证、加拿大大学毕业证(q微1954292140)新加坡大学毕业证、新西兰大学毕业证、爱尔兰毕业证、西班牙毕业证、德国毕业证,回国证明,留信网认证,留信认证办理,学历认证。从而完成就业。圣地亚哥州立大学毕业证办理,圣地亚哥州立大学文凭办理,圣地亚哥州立大学成绩单办理和真实留信认证、留服认证、圣地亚哥州立大学学历认证。学院文凭定制,圣地亚哥州立大学原版文凭补办,扫描件文凭定做,100%文凭复刻。
特殊原因导致无法毕业,也可以联系我们帮您办理相关材料:
1:在圣地亚哥州立大学挂科了,不想读了,成绩不理想怎么办???
2:打算回国了,找工作的时候,需要提供认证《SDSU成绩单购买办理圣地亚哥州立大学毕业证书范本》【Q/WeChat:1954292140】Buy San Diego State University Diploma《正式成绩单论文没过》有文凭却得不到认证。又该怎么办???美国毕业证购买,美国文凭购买,【q微1954292140】美国文凭购买,美国文凭定制,美国文凭补办。专业在线定制美国大学文凭,定做美国本科文凭,【q微1954292140】复制美国San Diego State University completion letter。在线快速补办美国本科毕业证、硕士文凭证书,购买美国学位证、圣地亚哥州立大学Offer,美国大学文凭在线购买。
美国文凭圣地亚哥州立大学成绩单,SDSU毕业证【q微1954292140】办理美国圣地亚哥州立大学毕业证(SDSU毕业证书)【q微1954292140】录取通知书offer在线制作圣地亚哥州立大学offer/学位证毕业证书样本、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作。帮你解决圣地亚哥州立大学学历学位认证难题。
主营项目:
1、真实教育部国外学历学位认证《美国毕业文凭证书快速办理圣地亚哥州立大学办留服认证》【q微1954292140】《论文没过圣地亚哥州立大学正式成绩单》,教育部存档,教育部留服网站100%可查.
2、办理SDSU毕业证,改成绩单《SDSU毕业证明办理圣地亚哥州立大学成绩单购买》【Q/WeChat:1954292140】Buy San Diego State University Certificates《正式成绩单论文没过》,圣地亚哥州立大学Offer、在读证明、学生卡、信封、证明信等全套材料,从防伪到印刷,从水印到钢印烫金,高精仿度跟学校原版100%相同.
3、真实使馆认证(即留学人员回国证明),使馆存档可通过大使馆查询确认.
4、留信网认证,国家专业人才认证中心颁发入库证书,留信网存档可查.
《圣地亚哥州立大学学位证书的英文美国毕业证书办理SDSU办理学历认证书》【q微1954292140】学位证1:1完美还原海外各大学毕业材料上的工艺:水印,阴影底纹,钢印LOGO烫金烫银,LOGO烫金烫银复合重叠。文字图案浮雕、激光镭射、紫外荧光、温感、复印防伪等防伪工艺。
高仿真还原美国文凭证书和外壳,定制美国圣地亚哥州立大学成绩单和信封。毕业证网上可查学历信息SDSU毕业证【q微1954292140】办理美国圣地亚哥州立大学毕业证(SDSU毕业证书)【q微1954292140】学历认证生成授权声明圣地亚哥州立大学offer/学位证文凭购买、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作。帮你解决圣地亚哥州立大学学历学位认证难题。
圣地亚哥州立大学offer/学位证、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作【q微1954292140】Buy San Diego State University Diploma购买美国毕业证,购买英国毕业证,购买澳洲毕业证,购买加拿大毕业证,以及德国毕业证,购买法国毕业证(q微1954292140)购买荷兰毕业证、购买瑞士毕业证、购买日本毕业证、购买韩国毕业证、购买新西兰毕业证、购买新加坡毕业证、购买西班牙毕业证、购买马来西亚毕业证等。包括了本科毕业证,硕士毕业证。
Dimension Data has over 30,000 employees in nine operating regions spread over all continents. They provide services from infrastructure sales to IT outsourcing for multinationals. As the Global Process Owner at Dimension Data, Jan Vermeulen is responsible for the standardization of the global IT services processes.
Jan shares his journey of establishing process mining as a methodology to improve process performance and compliance, to grow their business, and to increase the value in their operations. These three pillars form the foundation of Dimension Data's business case for process mining.
Jan shows examples from each of the three pillars and shares what he learned on the way. The growth pillar is particularly new and interesting, because Dimension Data was able to compete in a RfP process for a new customer by providing a customized offer after analyzing the customer's data with process mining.
2025年新版意大利毕业证布鲁诺马代尔纳嘉雷迪米音乐学院文凭【q微1954292140】办理布鲁诺马代尔纳嘉雷迪米音乐学院毕业证(Rimini毕业证书)2025年新版毕业证书【q微1954292140】布鲁诺马代尔纳嘉雷迪米音乐学院offer/学位证、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作【q微1954292140】Buy Conservatorio di Musica "B.Maderna G.Lettimi" Diploma购买美国毕业证,购买英国毕业证,购买澳洲毕业证,购买加拿大毕业证,以及德国毕业证,购买法国毕业证(q微1954292140)购买荷兰毕业证、购买瑞士毕业证、购买日本毕业证、购买韩国毕业证、购买新西兰毕业证、购买新加坡毕业证、购买西班牙毕业证、购买马来西亚毕业证等。包括了本科毕业证,硕士毕业证。
主营项目:
1、真实教育部国外学历学位认证《意大利毕业文凭证书快速办理布鲁诺马代尔纳嘉雷迪米音乐学院毕业证定购》【q微1954292140】《论文没过布鲁诺马代尔纳嘉雷迪米音乐学院正式成绩单》,教育部存档,教育部留服网站100%可查.
2、办理Rimini毕业证,改成绩单《Rimini毕业证明办理布鲁诺马代尔纳嘉雷迪米音乐学院办理文凭》【Q/WeChat:1954292140】Buy Conservatorio di Musica "B.Maderna G.Lettimi" Certificates《正式成绩单论文没过》,布鲁诺马代尔纳嘉雷迪米音乐学院Offer、在读证明、学生卡、信封、证明信等全套材料,从防伪到印刷,从水印到钢印烫金,高精仿度跟学校原版100%相同.
3、真实使馆认证(即留学人员回国证明),使馆存档可通过大使馆查询确认.
4、留信网认证,国家专业人才认证中心颁发入库证书,留信网存档可查.
《布鲁诺马代尔纳嘉雷迪米音乐学院留服认证意大利毕业证书办理Rimini文凭不见了怎么办》【q微1954292140】学位证1:1完美还原海外各大学毕业材料上的工艺:水印,阴影底纹,钢印LOGO烫金烫银,LOGO烫金烫银复合重叠。文字图案浮雕、激光镭射、紫外荧光、温感、复印防伪等防伪工艺。
高仿真还原意大利文凭证书和外壳,定制意大利布鲁诺马代尔纳嘉雷迪米音乐学院成绩单和信封。毕业证定制Rimini毕业证【q微1954292140】办理意大利布鲁诺马代尔纳嘉雷迪米音乐学院毕业证(Rimini毕业证书)【q微1954292140】学位证书制作代办流程布鲁诺马代尔纳嘉雷迪米音乐学院offer/学位证成绩单激光标、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作。帮你解决布鲁诺马代尔纳嘉雷迪米音乐学院学历学位认证难题。
意大利文凭布鲁诺马代尔纳嘉雷迪米音乐学院成绩单,Rimini毕业证【q微1954292140】办理意大利布鲁诺马代尔纳嘉雷迪米音乐学院毕业证(Rimini毕业证书)【q微1954292140】安全可靠的布鲁诺马代尔纳嘉雷迪米音乐学院offer/学位证办理原版成绩单、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作。帮你解决布鲁诺马代尔纳嘉雷迪米音乐学院学历学位认证难题。
意大利文凭购买,意大利文凭定制,意大利文凭补办。专业在线定制意大利大学文凭,定做意大利本科文凭,【q微1954292140】复制意大利Conservatorio di Musica "B.Maderna G.Lettimi" completion letter。在线快速补办意大利本科毕业证、硕士文凭证书,购买意大利学位证、布鲁诺马代尔纳嘉雷迪米音乐学院Offer,意大利大学文凭在线购买。
如果您在英、加、美、澳、欧洲等留学过程中或回国后:
1、在校期间因各种原因未能顺利毕业《Rimini成绩单工艺详解》【Q/WeChat:1954292140】《Buy Conservatorio di Musica "B.Maderna G.Lettimi" Transcript快速办理布鲁诺马代尔纳嘉雷迪米音乐学院教育部学历认证书毕业文凭证书》,拿不到官方毕业证;
2、面对父母的压力,希望尽快拿到;
3、不清楚认证流程以及材料该如何准备;
4、回国时间很长,忘记办理;
5、回国马上就要找工作《正式成绩单布鲁诺马代尔纳嘉雷迪米音乐学院文凭详解细节》【q微1954292140】《研究生文凭Rimini毕业证详解细节》办给用人单位看;
6、企事业单位必须要求办理的;
7、需要报考公务员、购买免税车、落转户口、申请留学生创业基金。
【q微1954292140】帮您解决在意大利布鲁诺马代尔纳嘉雷迪米音乐学院未毕业难题(Conservatorio di Musica "B.Maderna G.Lettimi" )文凭购买、毕业证购买、大学文凭购买、大学毕业证购买、买文凭、日韩文凭、英国大学文凭、美国大学文凭、澳洲大学文凭、加拿大大学文凭(q微1954292140)新加坡大学文凭、新西兰大学文凭、爱尔兰文凭、西班牙文凭、德国文凭、教育部认证,买毕业证,毕业证购买,买大学文凭,购买日韩毕业证、英国大学毕业证、美国大学毕业证、澳洲大学毕业证、加拿大大学毕业证(q微1954292140)新加坡大学毕业证、新西兰大学毕业证、爱尔兰毕业证、西班牙毕业证、德国毕业证,回国证明,留信网认证,留信认证办理,学历认证。从而完成就业。布鲁诺马代尔纳嘉雷迪米音乐学院毕业证办理,布鲁诺马代尔纳嘉雷迪米音乐学院文凭办理,布鲁诺马代尔纳嘉雷迪米音乐学院成绩单办理和真实留信认证、留服认证、布鲁诺马代尔纳嘉雷迪米音乐学院学历认证。学院文凭定制,布鲁诺马代尔纳嘉雷迪米音乐学院原版文凭补办,扫描件文凭定做,100%文凭复刻。
特殊原因导致无法毕业,也可以联系我们帮您办理相关材料:
1:在布鲁诺马代尔纳嘉雷迪米音乐学院挂科了,不想读了,成绩不理想怎么办???
2:打算回国了,找工作的时候,需要提供认证《Rimini成绩单购买办理布鲁诺马代尔纳嘉雷迪米音乐学院毕业证书范本》【Q/WeChat:1954292140】Buy Conservatorio di Musica "B.Maderna G.Lettimi" Diploma《正式成绩单论文没过》有文凭却得不到认证。又该怎么办???意大利毕业证购买,意大利文凭购买,
3:回国了找工作没有布鲁诺马代尔纳嘉雷迪米音乐学院文凭怎么办?有本科却要求硕士又怎么办?
Just-in-time: Repetitive production system in which processing and movement of materials and goods occur just as they are needed, usually in small batches
JIT is characteristic of lean production systems
JIT operates with very little “fat”
Zig Websoftware creates process management software for housing associations. Their workflow solution is used by the housing associations to, for instance, manage the process of finding and on-boarding a new tenant once the old tenant has moved out of an apartment.
Paul Kooij shows how they could help their customer WoonFriesland to improve the housing allocation process by analyzing the data from Zig's platform. Every day that a rental property is vacant costs the housing association money.
But why does it take so long to find new tenants? For WoonFriesland this was a black box. Paul explains how he used process mining to uncover hidden opportunities to reduce the vacancy time by 4,000 days within just the first six months.
Bram Vanschoenwinkel is a Business Architect at AE. Bram first heard about process mining in 2008 or 2009, when he was searching for new techniques with a quantitative approach to process analysis. By now he has completed several projects in payroll accounting, public administration, and postal services.
The discovered AS IS process models are based on facts rather than opinions and, therefore, serve as the ideal starting point for change. Bram uses process mining not as a standalone technique but complementary and in combination with other techniques to focus on what is really important: Actually improving the process.
This presentation provides a comprehensive introduction to Microsoft Excel, covering essential skills for beginners and intermediate users. We will explore key features, formulas, functions, and data analysis techniques.
Johan Lammers from Statistics Netherlands has been a business analyst and statistical researcher for almost 30 years. In their business, processes have two faces: You can produce statistics about processes and processes are needed to produce statistics. As a government-funded office, the efficiency and the effectiveness of their processes is important to spend that public money well.
Johan takes us on a journey of how official statistics are made. One way to study dynamics in statistics is to take snapshots of data over time. A special way is the panel survey, where a group of cases is followed over time. He shows how process mining could test certain hypotheses much faster compared to statistical tools like SPSS.
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...disnakertransjabarda
Gen Z (born between 1997 and 2012) is currently the biggest generation group in Indonesia with 27.94% of the total population or. 74.93 million people.
How to regulate and control your it-outsourcing provider with process miningProcess mining Evangelist
Oliver Wildenstein is an IT process manager at MLP. As in many other IT departments, he works together with external companies who perform supporting IT processes for his organization. With process mining he found a way to monitor these outsourcing providers.
Rather than having to believe the self-reports from the provider, process mining gives him a controlling mechanism for the outsourced process. Because such analyses are usually not foreseen in the initial outsourcing contract, companies often have to pay extra to get access to the data for their own process.
How to regulate and control your it-outsourcing provider with process miningProcess mining Evangelist
Ad
Introduction to statistics covering the basics
1. Class Structure
Instructors
Jobayer Hossain, Ph.D. - Biostatistician
Tim Bunnell, Ph.D. - Psychologist
8 Classes
3 Take-home assignments
Assigned in classes 2, 4, and 6
Due in classes 3, 5, and 7
1 Take-home final exam/assignment
Assigned in class 8 -- return for final comments.
2. Class Participation
Default dataset
60 subjects
3 or 4 groups
Several measures of different types
(Nominal, Ordinal, Interval, Ratio)
Contributed datasets - (bring your own)
DE-IDENTIFIED!
Areas of special interest
Let us know yours!
3. Optional Late Topics
Possible special topics
Microarray analyses
Pattern Recognition
Machine Learning
Hidden Markov Modeling
Time series analysis
Others?
4. Basics of Statistics
Definition: Science of collection, presentation, analysis, and reasonable
interpretation of data.
Statistics presents a rigorous scientific method for gaining insight into data. For
example, suppose we measure the weight of 100 patients in a study. With so
many measurements, simply looking at the data fails to provide an informative
account. However statistics can give an instant overall picture of data based
on graphical presentation or numerical summarization irrespective to the
number of data points. Besides data summarization, another important task of
statistics is to make inference and predict relations of variables.
6. Statistical Description of Data
Statistics describes a numeric set of
data by its
Center
Variability
Shape
Statistics describes a categorical set
of data by
Frequency, percentage or proportion of
each category
7. Some Definitions
Variable - any characteristic of an individual or entity. A variable can
take different values for different individuals. Variables can be
categorical or quantitative. Per S. S. Stevens…
• Nominal - Categorical variables with no inherent order or ranking sequence
such as names or classes (e.g., gender). Value may be a numerical, but without
numerical value (e.g., I, II, III). The only operation that can be applied to Nominal
variables is enumeration.
• Ordinal - Variables with an inherent rank or order, e.g. mild, moderate, severe.
Can be compared for equality, or greater or less, but not how much greater or
less.
• Interval - Values of the variable are ordered as in Ordinal, and additionally,
differences between values are meaningful, however, the scale is not absolutely
anchored. Calendar dates and temperatures on the Fahrenheit scale are examples.
Addition and subtraction, but not multiplication and division are meaningful
operations.
• Ratio - Variables with all properties of Interval plus an absolute, non-arbitrary
zero point, e.g. age, weight, temperature (Kelvin). Addition, subtraction,
multiplication, and division are all meaningful operations.
8. Some Definitions
Distribution - (of a variable) tells us what values the variable
takes and how often it takes these values.
• Unimodal - having a single peak
• Bimodal - having two distinct peaks
• Symmetric - left and right half are mirror images.
9. Frequency Distribution
Age 1 2 3 4 5 6
Frequency 5 3 7 5 4 2
Frequency Distribution of Age
Grouped Frequency Distribution of Age:
Age Group 1-2 3-4 5-6
Frequency 8 12 6
Consider a data set of 26 children of ages 1-6 years. Then the
frequency distribution of variable ‘age’ can be tabulated as
follows:
10. Cumulative Frequency
Age Group 1-2 3-4 5-6
Frequency 8 12 6
Cumulative Frequency 8 20 26
Age 1 2 3 4 5 6
Frequency 5 3 7 5 4 2
Cumulative Frequency 5 8 15 20 24 26
Cumulative frequency of data in previous page
11. Data Presentation
Two types of statistical presentation of data - graphical and numerical.
Graphical Presentation: We look for the overall pattern and for striking
deviations from that pattern. Over all pattern usually described by
shape, center, and spread of the data. An individual value that falls
outside the overall pattern is called an outlier.
Bar diagram and Pie charts are used for categorical variables.
Histogram, stem and leaf and Box-plot are used for numerical variable.
12. Data Presentation –Categorical
Variable
Bar Diagram: Lists the categories and presents the percent or count of
individuals who fall in each category.
Treatment
Group
Frequency Proportion Percent
(%)
1 15 (15/60)=0.25 25.0
2 25 (25/60)=0.333 41.7
3 20 (20/60)=0.417 33.3
Total 60 1.00 100
Figure 1: Bar Chart of Subjects in
Treatment Groups
0
5
10
15
20
25
30
1 2 3
Treatment Group
Number
of
Subjects
13. Data Presentation –Categorical
Variable
Pie Chart: Lists the categories and presents the percent or count of
individuals who fall in each category.
Figure 2: Pie Chart of
Subjects in Treatment Groups
25%
42%
33% 1
2
3
Treatment
Group
Frequency Proportion Percent
(%)
1 15 (15/60)=0.25 25.0
2 25 (25/60)=0.333 41.7
3 20 (20/60)=0.417 33.3
Total 60 1.00 100
14. Graphical Presentation –Numerical
Variable
Figure 3: Age Distribution
0
2
4
6
8
10
12
14
16
40 60 80 100 120 140 More
Age in Month
Number
of
Subjects
Histogram: Overall pattern can be described by its shape, center,
and spread. The following age distribution is right skewed. The
center lies between 80 to 100. No outliers.
Mean 90.41666667
Standard Error 3.902649518
Median 84
Mode 84
Standard Deviation 30.22979318
Sample Variance 913.8403955
Kurtosis -1.183899591
Skewness 0.389872725
Range 95
Minimum 48
Maximum 143
Sum 5425
Count 60
16. Numerical Presentation
To understand how well a central value characterizes a set of observations, let
us consider the following two sets of data:
A: 30, 50, 70
B: 40, 50, 60
The mean of both two data sets is 50. But, the distance of the observations from
the mean in data set A is larger than in the data set B. Thus, the mean of data
set B is a better representation of the data set than is the case for set A.
A fundamental concept in summary statistics is that of a central value for a set
of observations and the extent to which the central value characterizes the
whole set of data. Measures of central value such as the mean or median must
be coupled with measures of data dispersion (e.g., average distance from the
mean) to indicate how well the central value characterizes the data as a whole.
17. Methods of Center Measurement
Commonly used methods are mean, median, mode, geometric
mean etc.
Mean: Summing up all the observation and dividing by number of
observations. Mean of 20, 30, 40 is (20+30+40)/3 = 30.
n
x
n
x
x
x
x
x
n
x
x
x
n
i
i
n
n
1
2
1
,
2
1
...
variable,
this
of
mean
Then the
.
variable
a
of
ns
observatio
are
...
,
Let
:
Notation
Center measurement is a summary measure of the overall level of
a dataset
18. Methods of Center Measurement
Median: The middle value in an ordered sequence of observations.
That is, to find the median we need to order the data set and then
find the middle value. In case of an even number of observations
the average of the two middle most values is the median. For
example, to find the median of {9, 3, 6, 7, 5}, we first sort the
data giving {3, 5, 6, 7, 9}, then choose the middle value 6. If the
number of observations is even, e.g., {9, 3, 6, 7, 5, 2}, then the
median is the average of the two middle values from the sorted
sequence, in this case, (5 + 6) / 2 = 5.5.
Mode: The value that is observed most frequently. The mode is
undefined for sequences in which no observation is repeated.
19. Mean or Median
The median is less sensitive to outliers (extreme scores) than the
mean and thus a better measure than the mean for highly skewed
distributions, e.g. family income. For example mean of 20, 30, 40,
and 990 is (20+30+40+990)/4 =270. The median of these four
observations is (30+40)/2 =35. Here 3 observations out of 4 lie
between 20-40. So, the mean 270 really fails to give a realistic
picture of the major part of the data. It is influenced by extreme
value 990.
20. Methods of Variability Measurement
Commonly used methods: range, variance, standard deviation,
interquartile range, coefficient of variation etc.
Range: The difference between the largest and the smallest
observations. The range of 10, 5, 2, 100 is (100-2)=98. It’s a crude
measure of variability.
Variability (or dispersion) measures the amount of scatter in a
dataset.
21. Methods of Variability Measurement
Variance: The variance of a set of observations is the average of the
squares of the deviations of the observations from their mean. In
symbols, the variance of the n observations x1, x2,…xn is
Variance of 5, 7, 3? Mean is (5+7+3)/3 = 5 and the variance is
4
1
3
)
5
7
(
)
5
3
(
)
5
5
( 2
2
2
1
)
(
....
)
( 2
2
1
2
n
x
x
x
x
S n
Standard Deviation: Square root of the variance. The standard
deviation of the above example is 2.
22. Methods of Variability Measurement
Quartiles: Data can be divided into four regions that cover the total
range of observed values. Cut points for these regions are known as
quartiles.
The first quartile (Q1) is the first 25% of the data. The second quartile
(Q2) is between the 25th and 50th percentage points in the data. The
upper bound of Q2 is the median. The third quartile (Q3) is the 25%
of the data lying between the median and the 75% cut point in the
data.
Q1 is the median of the first half of the ordered observations and Q3 is
the median of the second half of the ordered observations.
In notations, quartiles of a data is the ((n+1)/4)qth observation of the
data, where q is the desired quartile and n is the number of
observations of data.
23. Methods of Variability Measurement
An example with 15 numbers
3 6 7 11 13 22 30 40 44 50 52 61 68 80 94
Q1 Q2 Q3
The first quartile is Q1=11. The second quartile is Q2=40 (This is
also the Median.) The third quartile is Q3=61.
Inter-quartile Range: Difference between Q3 and Q1. Inter-quartile
range of the previous example is 61- 40=21. The middle half of the
ordered data lie between 40 and 61.
In the following example Q1= ((15+1)/4)1 =4th observation of the data.
The 4th observation is 11. So Q1 is of this data is 11.
24. Deciles and Percentiles
Percentiles: If data is ordered and divided into 100 parts, then cut
points are called Percentiles. 25th percentile is the Q1, 50th
percentile is the Median (Q2) and the 75th percentile of the data is
Q3.
Deciles: If data is ordered and divided into 10 parts, then cut points
are called Deciles
In notations, percentiles of a data is the ((n+1)/100)p th observation
of the data, where p is the desired percentile and n is the number of
observations of data.
Coefficient of Variation: The standard deviation of data divided by it’s
mean. It is usually expressed in percent.
100
x
Coefficient of Variation =
25. Five Number Summary
Five Number Summary: The five number summary of a distribution
consists of the smallest (Minimum) observation, the first quartile (Q1),
The median(Q2), the third quartile, and the largest (Maximum)
observation written in order from smallest to largest.
Box Plot: A box plot is a graph of the five number summary. The
central box spans the quartiles. A line within the box marks the
median. Lines extending above and below the box mark the
smallest and the largest observations (i.e., the range). Outlying
samples may be additionally plotted outside the range.
27. Choosing a Summary
The five number summary is usually better than the mean and standard
deviation for describing a skewed distribution or a distribution with
extreme outliers. The mean and standard deviation are reasonable for
symmetric distributions that are free of outliers.
In real life we can’t always expect symmetry of the data. It’s a common
practice to include number of observations (n), mean, median, standard
deviation, and range as common for data summarization purpose. We
can include other summary statistics like Q1, Q3, Coefficient of variation
if it is considered to be important for describing data.
28. Shape of Data
Shape of data is measured by
Skewness
Kurtosis
29. Skewness
Measures asymmetry of data
Positive or right skewed: Longer right tail
Negative or left skewed: Longer left tail
2
/
3
1
2
1
3
2
1
)
(
)
(
Skewness
Then,
ns.
observatio
be
,...
,
Let
n
i
i
n
i
i
n
x
x
x
x
n
n
x
x
x
30. Kurtosis
Measures peakedness of the distribution of
data. The kurtosis of normal distribution is 0.
3
)
(
)
(
Kurtosis
Then,
ns.
observatio
be
,...
,
Let
2
1
2
1
4
2
1
n
i
i
n
i
i
n
x
x
x
x
n
n
x
x
x
31. Summary of the Variable ‘Age’ in
the given data set
Mean 90.41666667
Standard Error 3.902649518
Median 84
Mode 84
Standard Deviation 30.22979318
Sample Variance 913.8403955
Kurtosis -1.183899591
Skewness 0.389872725
Range 95
Minimum 48
Maximum 143
Sum 5425
Count 60
Histogram of Age
Age in Month
Number
of
Subjects
40 60 80 100 120 140 160
0
2
4
6
8
10
32. Summary of the Variable ‘Age’ in
the given data set
60
80
100
120
140
Boxplot of Age in Month
Age(month)
33. Class Summary (First Part)
So far we have learned-
Statistics and data presentation/data summarization
Graphical Presentation: Bar Chart, Pie Chart, Histogram, and Box Plot
Numerical Presentation: Measuring Central value of data (mean,
median, mode etc.), measuring dispersion (standard deviation,
variance, co-efficient of variation, range, inter-quartile range etc),
quartiles, percentiles, and five number summary
Any questions ?
34. Brief concept of Statistical Softwares
There are many softwares to perform statistical analysis and visualization
of data. Some of them are SAS (System for Statistical Analysis), S-plus,
R, Matlab, Minitab, BMDP, Stata, SPSS, StatXact, Statistica, LISREL, JMP,
GLIM, HIL, MS Excel etc. We will discuss MS Excel and SPSS in brief.
Some useful websites for more information of statistical softwares-
http://www.galaxy.gmu.edu/papers/astr1.html
http://ourworld.compuserve.com/homepages/Rainer_Wuerlaender/st
atsoft.htm#archiv
http://www.R-project.org
35. Microsoft Excel
A Spreadsheet Application. It features calculation, graphing tools,
pivot tables and a macro programming language called VBA (Visual
Basic for Applications).
There are many versions of MS-Excel. Excel XP, Excel 2003, Excel 2007
are capable of performing a number of statistical analyses.
Starting MS Excel: Double click on the Microsoft Excel icon on the
desktop or Click on Start --> Programs --> Microsoft Excel.
Worksheet: Consists of a multiple grid of cells with numbered rows down the
page and alphabetically-tilted columns across the page. Each cell is referenced
by its coordinates. For example, A3 is used to refer to the cell in column A and
row 3. B10:B20 is used to refer to the range of cells in column B and rows 10
through 20.
36. Microsoft Excel
Creating Formulas: 1. Click the cell that you want to enter the
formula, 2. Type = (an equal sign), 3. Click the Function Button, 4.
Select the formula you want and step through the on-screen
instructions.
x
f
Opening a document: File Open (From a existing workbook). Change the
directory area or drive to look for file in other locations.
Creating a new workbook: FileNewBlank Document
Saving a File: FileSave
Selecting more than one cell: Click on a cell e.g. A1), then hold the Shift key
and click on another (e.g. D4) to select cells between and A1 and D4 or Click on a
cell and drag the mouse across the desired range.
37. Microsoft Excel
Entering Date and Time: Dates are stored as MM/DD/YYYY. No need to enter
in that format. For example, Excel will recognize jan 9 or jan-9 as 1/9/2007 and
jan 9, 1999 as 1/9/1999. To enter today’s date, press Ctrl and ; together. Use a
or p to indicate am or pm. For example, 8:30 p is interpreted as 8:30 pm. To
enter current time, press Ctrl and : together.
Copy and Paste all cells in a Sheet: Ctrl+A for selecting, Ctrl +C for copying
and Ctrl+V for Pasting.
Sorting: Data Sort Sort By …
Descriptive Statistics and other Statistical methods: ToolsData Analysis
Statistical method. If Data Analysis is not available then click on Tools Add-Ins and
then select Analysis ToolPack and Analysis toolPack-Vba
38. Microsoft Excel
Statistical and Mathematical Function: Start with ‘=‘ sign and then select
function from function wizard .
x
f
Inserting a Chart: Click on Chart Wizard (or InsertChart), select
chart, give, Input data range, Update the Chart options, and Select
output range/ Worksheet.
Importing Data in Excel: File open FileType Click on File
Choose Option ( Delimited/Fixed Width) Choose Options (Tab/
Semicolon/ Comma/ Space/ Other) Finish.
Limitations: Excel uses algorithms that are vulnerable to rounding and
truncation errors and may produce inaccurate results in extreme
cases.
39. Statistics Package
for the Social Science (SPSS)
A general purpose statistical package SPSS is widely used in the social
sciences, particularly in sociology and psychology.
SPSS can import data from almost any type of file to generate tabulated
reports, plots of distributions and trends, descriptive statistics, and
complex statistical analyzes.
Starting SPSS: Double Click on SPSS on desktop or ProgramSPSS.
Opening a SPSS file: FileOpen
• Data Editor
Various pull-down menus appear at the top of the Data Editor window. These
pull-down menus are at the heart of using SPSSWIN. The Data Editor menu
items (with some of the uses of the menu) are:
MENUS AND TOOLBARS
40. Statistics Package
for the Social Science (SPSS)
FILE used to open and save data files
EDIT used to copy and paste data values; used to find data in a
file; insert variables and cases; OPTIONS allows the user to
set general preferences as well as the setup for the
Navigator, Charts, etc.
VIEW user can change toolbars; value labels can be seen in cells
instead of data values
DATA select, sort or weight cases; merge files
MENUS AND TOOLBARS
TRANSFORM Compute new variables, recode variables, etc.
41. Statistics Package
for the Social Science (SPSS)
ANALYZE perform various statistical procedures
GRAPHS create bar and pie charts, etc
UTILITIES add comments to accompany data file (and other,
advanced features)
ADD-ons these are features not currently installed (advanced
statistical procedures)
WINDOW switch between data, syntax and navigator windows
HELP to access SPSSWIN Help information
MENUS AND TOOLBARS
42. Statistics Package
for the Social Science (SPSS)
Navigator (Output) Menus
When statistical procedures are run or charts are created, the output will appear
in the Navigator window. The Navigator window contains many of the pull-down
menus found in the Data Editor window. Some of the important menus in the
Navigator window include:
INSERT used to insert page breaks, titles, charts, etc.
FORMAT for changing the alignment of a particular portion of the output
MENUS AND TOOLBARS
43. Statistics Package
for the Social Science (SPSS)
• Formatting Toolbar
When a table has been created by a statistical procedure, the user can edit the
table to create a desired look or add/delete information. Beginning with version
14.0, the user has a choice of editing the table in the Output or opening it in a
separate Pivot Table (DEFINE!) window. Various pulldown menus are activated
when the user double clicks on the table. These include:
EDIT undo and redo a pivot, select a table or table body (e.g., to
change the font)
INSERT used to insert titles, captions and footnotes
PIVOT used to perform a pivot of the row and column variables
FORMAT various modifications can be made to tables and cells
44. Statistics Package
for the Social Science (SPSS)
• Additional menus
CHART EDITOR used to edit a graph
SYNTAX EDITOR used to edit the text in a syntax window
• Show or hide a toolbar
Click on VIEW ⇒ TOOLBARS ⇒ to show it/ to hide it
• Move a toolbar
Click on the toolbar (but not on one of the pushbuttons) and then drag the toolbar to
its new location
• Customize a toolbar
Click on VIEW ⇒ TOOLBARS ⇒ CUSTOMIZE
45. Statistics Package
for the Social Science (SPSS)
Importing data from an EXCEL spreadsheet:
Data from an Excel spreadsheet can be imported into SPSSWIN as follows:
1. In SPSSWIN click on FILE ⇒ OPEN ⇒ DATA. The OPEN DATA FILE Dialog
Box will appear.
2. Locate the file of interest: Use the "Look In" pull-down list to identify the folder
containing the Excel file of interest
3. From the FILE TYPE pull down menu select EXCEL (*.xls).
4. Click on the file name of interest and click on OPEN or simply double-click on
the file name.
5. Keep the box checked that reads "Read variable names from the first row of
data". This presumes that the first row of the Excel data file contains variable
names in the first row. [If the data resided in a different worksheet in the Excel
file, this would need to be entered.]
6. Click on OK. The Excel data file will now appear in the SPSSWIN Data
Editor.
46. Statistics Package
for the Social Science (SPSS)
Importing data from an EXCEL spreadsheet:
7. The former EXCEL spreadsheet can now be saved as an SPSS file (FILE ⇒
SAVE AS) and is ready to be used in analyses. Typically, you would label variable
and values, and define missing values.
Importing an Access table
SPSSWIN does not offer a direct import for Access tables. Therefore, we must follow
these steps:
1. Open the Access file
2. Open the data table
3. Save the data as an Excel file
4. Follow the steps outlined in the data import from Excel Spreadsheet to SPSSWIN.
Importing Text Files into SPSSWIN
Text data points typically are separated (or “delimited”) by tabs or commas.
Sometimes they can be of fixed format.
47. Statistics Package
for the Social Science (SPSS)
Importing tab-delimited data
In SPSSWIN click on FILE ⇒ OPEN ⇒ DATA. Look in the appropriate location for
the text file. Then select “Text” from “Files of type”: Click on the file name and then
click on “Open.” You will see the Text Import Wizard – step 1 of 6 dialog box.
You will now have an SPSS data file containing the former tab-delimited data. You
simply need to add variable and value labels and define missing values.
Exporting Data to Excel
click on FILE ⇒ SAVE AS. Click on the File Name for the file to be exported. For
the “Save as Type” select from the pull-down menu Excel (*.xls). You will notice the
checkbox for “write variable names to spreadsheet.” Leave this checked as you will
want the variable names to be in the first row of each column in the Excel
spreadsheet. Finally, click on Save.
48. Statistics Package
for the Social Science (SPSS)
Running the FREQUENCIES procedure
1. Open the data file (from the menus, click on FILE ⇒ OPEN ⇒ DATA) of
interest.
2. From the menus, click on ANALYZE ⇒ DESCRIPTIVE STATISTICS ⇒
FREQUENCIES
3. The FREQUENCIES Dialog Box will appear. In the left-hand box will be a listing
("source variable list") of all the variables that have been defined in the data file. The
first step is identifying the variable(s) for which you want to run a frequency analysis.
Click on a variable name(s). Then click the [ > ] pushbutton. The variable name(s)
will now appear in the VARIABLE[S]: box ("selected variable list"). Repeat these
steps for each variable of interest.
4. If all that is being requested is a frequency table showing count, percentages
(raw, adjusted and cumulative), then click on OK.
49. Statistics Package
for the Social Science (SPSS)
Requesting STATISTICS
Descriptive and summary STATISTICS can be requested for numeric variables. To
request Statistics:
1. From the FREQUENCIES Dialog Box, click on the STATISTICS... pushbutton.
2. This will bring up the FREQUENCIES: STATISTICS Dialog Box.
3. The STATISTICS Dialog Box offers the user a variety of choices:
DESCRIPTIVES
The DESCRIPTIVES procedure can be used to generate descriptive statistics
(click on ANALYZE ⇒ DESCRIPTIVE STATISTICS ⇒ DESCRIPTIVES). The
procedure offers many of the same statistics as the FREQUENCIES procedure,
but without generating frequency analysis tables.
50. Statistics Package
for the Social Science (SPSS)
Requesting CHARTS
One can request a chart (graph) to be created for a variable or variables included in
a FREQUENCIES procedure.
1. In the FREQUENCIES Dialog box click on CHARTS.
2. The FREQUENCIES: CHARTS Dialog box will appear. Choose the intended chart
(e.g. Bar diagram, Pie chart, histogram.
Pasting charts into Word
1. Click on the chart.
2. Click on the pulldown menu EDIT ⇒ COPY OBJECTS
3. Go to the Word document in which the chart is to be embedded. Click on EDIT ⇒
PASTE SPECIAL
4. Select Formatted Text (RTF) and then click on OK
5. Enlarge the graph to a desired size by dragging one or more of the black squares
along the perimeter (if the black squares are not visible, click once on the graph).
51. Statistics Package
for the Social Science (SPSS)
BASIC STATISTICAL PROCEDURES: CROSSTABS
1. From the ANALYZE pull-down menu, click on DESCRIPTIVE STATISTICS ⇒
CROSSTABS.
2. The CROSSTABS Dialog Box will then open.
3. From the variable selection box on the left click on a variable you wish to
designate as the Row variable. The values (codes) for the Row variable make up
the rows of the crosstabs table. Click on the arrow (>) button for Row(s). Next,
click on a different variable you wish to designate as the Column variable. The
values (codes) for the Column variable make up the columns of the crosstabs
table. Click on the arrow (>) button for Column(s).
4. You can specify more than one variable in the Row(s) and/or Column(s). A cross
table will be generated for each combination of Row and Column variables
52. Limitations: SPSS users have less control over data manipulation and
statistical output than other statistical packages such as SAS, Stata etc.
SPSS is a good first statistical package to perform quantitative research
in social science because it is easy to use and because it can be a good
starting point to learn more advanced statistical packages.
Statistics Package
for the Social Science (SPSS)