SlideShare a Scribd company logo
Statistics For Data Science | Statistics Using R Programming Language | Hypothesis Testing | Edureka
Introduction to Statistics
Terminology
Categories in Statistics
Descriptive & Inferential
Statistics
Statistics in R
Descriptive Statistics in R
Inferential Statistics in R
Agenda
Introduction to Statistics
Terminology
Categories in Statistics
Descriptive & Inferential
Statistics
Statistics in R
Descriptive Statistics in R
Inferential Statistics in R
Agenda
Introduction to Statistics
Terminology
Categories in Statistics
Descriptive & Inferential
Statistics
Statistics in R
Descriptive Statistics in R
Inferential Statistics in R
Agenda
Introduction to Statistics
Terminology
Categories in Statistics
Descriptive & Inferential
Statistics
Statistics in R
Descriptive Statistics in R
Inferential Statistics in R
Agenda
Introduction to Statistics
Terminology
Categories in Statistics
Descriptive & Inferential
Statistics
Statistics in R
Descriptive Statistics in R
Inferential Statistics in R
Agenda
Introduction to Statistics
Terminology
Categories in Statistics
Descriptive & Inferential
Statistics
Statistics in R
Descriptive Statistics in R
Inferential Statistics in R
Agenda
Introduction to Statistics
Terminology
Categories in Statistics
Descriptive & Inferential
Statistics
Statistics in R
Descriptive Statistics in R
Inferential Statistics in R
Agenda
Introduction to Statistics
Terminology
Categories in Statistics
Descriptive & Inferential
Statistics
Statistics in R
Descriptive Statistics in R
Inferential Statistics in R
Agenda
Introduction to Statistics
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Introduction to Statistics
Statistics is a branch of mathematics dealing with data collection and organization, analysis,
interpretation and presentation.
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Introduction to Statistics
Statistics is a branch of mathematics dealing with data collection and organization, analysis,
interpretation and presentation.
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Introduction to Statistics
Statistics is a branch of mathematics dealing with data collection and organization, analysis,
interpretation and presentation.
Analyse Data
Build a Model
Infer Result
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Introduction to Statistics
Statistics is a branch of mathematics dealing with data collection and organization, analysis,
interpretation and presentation.
Statistics
Stock
Market
Life
Sciences
Weather
Retail
Insurance
Education
Terminology
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Basic Terminology
There are a few statistical terms one should be aware of while dealing with statistics.
Population ParameterSample Variable
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Basic Terminology
There are a few statistical terms one should be aware of while dealing with statistics.
Population ParameterSample Variable
Population is the set of sources from which data has to be
collected.
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Basic Terminology
There are a few statistical terms one should be aware of while dealing with statistics.
Population ParameterSample Variable
A Sample is a subset of the Population.
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Basic Terminology
There are a few statistical terms one should be aware of while dealing with statistics.
Population ParameterSample Variable
A variable is any characteristics, number, or quantity that can
be measured or counted.
A variable may also be called a data item.
Gender Age Region
Height
Weight
Income
Blood Group Ethnicity
Degree
Time
Language
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Basic Terminology
There are a few statistical terms one should be aware of while dealing with statistics.
Population ParameterSample Variable
Also known as a statistical model, A statistical
Parameter or population parameter is a quantity that
indexes a family of probability distributions.
µ
∑
х
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Types of Analysis
An analysis can be done in one of two ways.
Analysis
Quantitative Qualitative
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Types of Analysis
An analysis can be done in one of two ways.
Also known as Statistical Analysis,
it is the science of collecting &
interpreting objects with numbers.
Also known as Non-statistical
Analysis, it mostly deals with
generic data using text, media, etc
Analysis
Quantitative Qualitative
Categories in Statistics
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Inferential statistics makes inferences and predictions about a
population based on a sample of data taken from the population in
question.
Descriptive statistics uses the data to provide descriptions of the
population, either through numerical calculations or graphs or
tables.
Categories in Statistics
There are two major categories in Statistics.
Descriptive
InferentialInferential
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Descriptive Statistics
This method, is mainly focused upon the main characteristics of data. It provides graphical
summary of the data.
Characteristics of Data
Descriptive Statistics
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Descriptive Statistics
Maximum
Minimum
Average
This method, is mainly focused upon the main characteristics of data. It provides graphical
summary of the data.
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Inferential Statistics
This method, generalizes a large dataset and applies probability to draw a conclusion. It allows us
to infer data parameters based on a statistical model using a sample data.
Statistical Model
Start
Process Step
Decision
Answer
Choice I
Choice II
Inferential Statistics
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Inferential Statistics
Tall
Short
Average
This method, generalizes a large dataset and applies probability to draw a conclusion. It allows us
to infer data parameters based on a statistical model using a sample data.
Descriptive Statistics – Statistical Measures
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Descriptive Statistics – Use Case
Here is a sample dataset of cars containing
the variables: Cars, Mileage per
Gallon(mpg), Cylinder Type (cyl),
Displacement (disp), Horse Power(hp) &
Real Axle Ratio(drat).
Using descriptive Analysis, you can analyse
each of the variables in the dataset for
mean, standard deviation, minimum and
maximum.
Cars mpg cyl disp hp drat
A 21 6 160 110 3.9
B 21 6 160 110 3.9
C 22.8 4 108 93 3.85
D 21.3 6 108 96 3
E 23 4 150 90 4
F 23 6 108 110 3.9
G 23 4 160 110 3.9
H 23 6 160 110 3.9
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Measures of the Centre
There are a few statistical terms one should be aware of while dealing with statistics.
Mean Median Mode
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Descriptive Statistics – Use Case
If we want to find out the average
horsepower of the cars among the
population of cars, we will check and
calculate the average of all values. In this
case,
Cars mpg cyl disp hp drat
A 21 6 160 110 3.9
B 21 6 160 110 3.9
C 22.8 4 108 93 3.85
D 21.3 6 108 96 3
E 23 4 150 90 4
F 23 6 108 110 3.9
G 23 4 160 110 3.9
H 23 6 160 110 3.9
110 + 110 + 93 + 96 + 90 + 110 + 110 + 110
8
= 103.625
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Measures of the Centre
There are a few statistical terms one should be aware of while dealing with statistics.
Mean Median Mode
Measure of average of all the values in a sample is called Mean.
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Descriptive Statistics – Use Case
If we want to find out the centre value of
mpg among the population of cars, we will
arrange the mpg values in ascending order
to choose the middle value. In this case,
21,21,21.3,22.8,23,23,23,23
But in case of even entries, we take
average of the two middle values. In this
case,
22.8+23
2
= 22.9
Cars mpg cyl disp hp drat
A 21 6 160 110 3.9
B 21 6 160 110 3.9
C 22.8 4 108 93 3.85
D 21.3 6 108 96 3
E 23 4 150 90 4
F 23 6 108 110 3.9
G 23 4 160 110 3.9
H 23 6 160 110 3.9
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Measures of the Centre
There are a few statistical terms one should be aware of while dealing with statistics.
Mean Median Mode
Measure of the central value of the sample set is called Median.
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Descriptive Statistics – Use Case
If we want to find out the most common
type of cylinder among the population of
cars, we will check the value which is
repeated most number of times.
4 6
4 6
Cars mpg cyl disp hp drat
A 21 6 160 110 3.9
B 21 6 160 110 3.9
C 22.8 4 108 93 3.85
D 21.3 6 108 96 3
E 23 4 150 90 4
F 23 6 108 110 3.9
G 23 4 160 110 3.9
H 23 6 160 110 3.9
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Measures of the Centre
There are a few statistical terms one should be aware of while dealing with statistics.
Mean Median Mode
The value most recurrent in the sample set is known as Mode.
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Measures of the Spread
There are a few statistical terms one should be aware of while dealing with statistics.
Range Standard DeviationInter Quartile Range Variance
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Measures of Spread
There are a few statistical terms one should be aware of while dealing with statistics.
Range Standard DeviationInter Quartile Range Variance
Range is the given measure of how spread apart the values in a dataset are.
Range = Max(𝑥𝑖) - Min(𝑥𝑖)
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Measures of Spread
There are a few statistical terms one should be aware of while dealing with statistics.
Range Standard DeviationInter Quartile Range Variance
Inter Quartile Range(IQR) is the measure of variability, based on dividing a dataset into
quartiles.
1 2 3 4 5 6 7 8
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Measures of Spread
There are a few statistical terms one should be aware of while dealing with statistics.
Range Standard DeviationInter Quartile Range Variance
Quartile
1 2 3 4 5 6 7 8
Q1 Q2 Q3
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Measures of Spread
There are a few statistical terms one should be aware of while dealing with statistics.
Range Standard DeviationInter Quartile Range Variance
Quartile
1 2 3 4 5 6 7 8
Q1 Q2 Q3
Q1=
2+3
2
=2.5
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Measures of Spread
There are a few statistical terms one should be aware of while dealing with statistics.
Range Standard DeviationInter Quartile Range Variance
Quartile
1 2 3 4 5 6 7 8
Q1 Q2 Q3
Q2=
4+5
2
=4.5
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Measures of Spread
There are a few statistical terms one should be aware of while dealing with statistics.
Range Standard DeviationInter Quartile Range Variance
Quartile
1 2 3 4 5 6 7 8
Q1 Q2 Q3
Q3=
6+7
2
=6.5
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Measures of Spread
There are a few statistical terms one should be aware of while dealing with statistics.
Range Standard DeviationInter Quartile Range Variance
Inter Quartile Range
1 2 3 4 5 6 7 8
Q1 Q3
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Measures of Spread
There are a few statistical terms one should be aware of while dealing with statistics.
Range Standard DeviationInter Quartile Range Variance
Variance describes how much a random variable differs from its expected value.
It entails computing squares of deviations.
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Measures of Spread
There are a few statistical terms one should be aware of while dealing with statistics.
Range Standard DeviationInter Quartile Range Variance
❖ Deviation is the difference between each element from the mean.
Deviation = (𝑥𝑖-µ)
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Measures of Spread
There are a few statistical terms one should be aware of while dealing with statistics.
Range Standard DeviationInter Quartile Range Variance
❖ Population Variance is the average of squared deviations.
σ² = ෍
𝑖=1
𝑁
= (𝑥𝑖−𝜇)²
1
𝑁
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Measures of Spread
There are a few statistical terms one should be aware of while dealing with statistics.
Range Standard DeviationInter Quartile Range Variance
❖ Sample Variance is the average of squared differences from the mean.
s² = ෍
𝑖=1
𝑁
= (𝑥𝑖− ҧ𝑥)²
1
(𝑛 − 1)
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Measures of Spread
There are a few statistical terms one should be aware of while dealing with statistics.
Range Standard DeviationInter Quartile Range Variance
Standard Deviation is the measure of the dispersion of a set of data from its mean.
σ = ෍
𝑖=1
𝑁
= (𝑥𝑖−𝜇)²
1
𝑁
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Standard Deviation– Use Case
Ross has 20 Dinosaur figures. They have the numbers 9, 2, 5, 4, 12, 7, 8, 11, 9, 3, 7, 4, 12, 5, 4,
10, 9, 6, 9, 4. Work out the Standard Deviation.
Find out the
mean for your
sample set.
STEP 1 The Mean is:
9+2+5+4+12+7+8+11+9+3+7+4+12+5+4+10+9+6+9+4
20
⸫µ=7
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Standard Deviation– Use Case
Ross has 20 Dinosaur figures. They have the numbers 9, 2, 5, 4, 12, 7, 8, 11, 9, 3, 7, 4, 12, 5, 4,
10, 9, 6, 9, 4. Work out the Standard Deviation.
Then for each
number, subtract
the Mean and
square the result.
STEP 2
(𝑥𝑖−𝜇)²
(9-7)²= 2²=4
(2-7)²= (-5)²=25
(5-7)²= (-2)²=4
And so on…
⸫ We get the following results:
4, 25, 4, 9, 25, 0, 1, 16, 4, 16, 0, 9, 25, 4, 9, 9, 4, 1, 4, 9
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Standard Deviation– Use Case
Ross has 20 Dinosaur figures. They have the numbers 9, 2, 5, 4, 12, 7, 8, 11, 9, 3, 7, 4, 12, 5, 4,
10, 9, 6, 9, 4. Work out the Standard Deviation.
Then work out the
mean of those
squared
differences.
STEP 3 ෍
𝑖=1
𝑁
= (𝑥𝑖−𝜇)²
1
𝑁
4+25+4+9+25+0+1+16+4+16+0+9+25+4+9+9+4+1+4+9
20
⸫ σ² = 8.9
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Standard Deviation– Use Case
Ross has 20 Dinosaur figures. They have the numbers 9, 2, 5, 4, 12, 7, 8, 11, 9, 3, 7, 4, 12, 5, 4,
10, 9, 6, 9, 4. Work out the Standard Deviation.
Take square root
of σ².
STEP 4
⸫ σ = 2.983
෍
𝑖=1
𝑁
= (𝑥𝑖−𝜇)²
1
𝑁
σ =
Statistics in R
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Statistics in R
❖ R is open-source and freely available.
❖ R is cross-platform compatible.
❖ R is a powerful scripting language.
❖ R is highly flexible and evolved.
Reasons for moving to R
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Statistics in R
❖ R is open-source and freely available.
❖ R is cross-platform compatible.
❖ R is a powerful scripting language.
❖ R is highly flexible and evolved.
Reasons for moving to R
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Statistics in R
❖ R is open-source and freely available.
❖ R is cross-platform compatible.
❖ R is a powerful scripting language.
❖ R is highly flexible and evolved.
Reasons for moving to R
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Statistics in R
❖ R is open-source and freely available.
❖ R is cross-platform compatible.
❖ R is a powerful scripting language.
❖ R is highly flexible and evolved.
Reasons for moving to R
Descriptive statistics in R
Inferential Statistics – Hypothesis Testing
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Hypothesis Testing
Statisticians use hypothesis testing to formally check whether the hypothesis is accepted or
rejected.
Hypothesis testing is conducted in the following manner:
❖ State the Hypotheses – This stage involves stating the null and alternative hypotheses.
❖ Formulate an Analysis Plan – This stage involves the construction of an analysis plan.
❖ Analyse Sample Data – This stage involves the calculation and interpretation of the test
statistic as described in the analysis plan.
❖ Interpret Results – This stage involves the application of the decision rule described in the
analysis plan.
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Hypothesis Testing
Nick John Bob Harry
Assume the event is free of bias.
So, what is the probability of John not cheating?
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Hypothesis Testing
Nick John Bob Harry
P(John not picked for a day) =
3
4
P(John not picked for 3 days) =
3
4
×
3
4
×
3
4
= 0.42 (approx)
P(John not picked for 12 days) = (
3
4
) 12
= 0.032 < 𝟎. 𝟎𝟓
Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification
Hypothesis Testing
Nick John Bob Harry
Null Hypothesis (𝑯 𝟎) : Result is no different from assumption.
Alternate Hypothesis (𝑯 𝒂) : Result disproves the assumption.
Probability of Event < 𝟎. 𝟎𝟓 (5%)
Inferential Statistics in R
www.edureka.co/masters-program/business-intelligence-certification
Ad

More Related Content

What's hot (20)

Data Analysis
Data AnalysisData Analysis
Data Analysis
Marcelo Augusto A. Cosgayon
 
Data Visualization in Exploratory Data Analysis
Data Visualization in Exploratory Data AnalysisData Visualization in Exploratory Data Analysis
Data Visualization in Exploratory Data Analysis
Eva Durall
 
Missing data handling
Missing data handlingMissing data handling
Missing data handling
QuantUniversity
 
Introduction to Statistical Machine Learning
Introduction to Statistical Machine LearningIntroduction to Statistical Machine Learning
Introduction to Statistical Machine Learning
mahutte
 
Dimension Reduction: What? Why? and How?
Dimension Reduction: What? Why? and How?Dimension Reduction: What? Why? and How?
Dimension Reduction: What? Why? and How?
Kazi Toufiq Wadud
 
Decision Tree Learning
Decision Tree LearningDecision Tree Learning
Decision Tree Learning
Md. Ariful Hoque
 
Data Science - Part V - Decision Trees & Random Forests
Data Science - Part V - Decision Trees & Random Forests Data Science - Part V - Decision Trees & Random Forests
Data Science - Part V - Decision Trees & Random Forests
Derek Kane
 
The Data Science Process
The Data Science ProcessThe Data Science Process
The Data Science Process
Vishal Patel
 
Exploratory data analysis
Exploratory data analysisExploratory data analysis
Exploratory data analysis
gokulprasath06
 
Linear models for data science
Linear models for data scienceLinear models for data science
Linear models for data science
Brad Klingenberg
 
Data Science - Part XII - Ridge Regression, LASSO, and Elastic Nets
Data Science - Part XII - Ridge Regression, LASSO, and Elastic NetsData Science - Part XII - Ridge Regression, LASSO, and Elastic Nets
Data Science - Part XII - Ridge Regression, LASSO, and Elastic Nets
Derek Kane
 
Exploratory data analysis
Exploratory data analysisExploratory data analysis
Exploratory data analysis
Gramener
 
Linear Regression
Linear RegressionLinear Regression
Linear Regression
Abdullah al Mamun
 
Logistic regression in Machine Learning
Logistic regression in Machine LearningLogistic regression in Machine Learning
Logistic regression in Machine Learning
Kuppusamy P
 
Logistic regression
Logistic regressionLogistic regression
Logistic regression
saba khan
 
DI&A Slides: Descriptive, Prescriptive, and Predictive Analytics
DI&A Slides: Descriptive, Prescriptive, and Predictive AnalyticsDI&A Slides: Descriptive, Prescriptive, and Predictive Analytics
DI&A Slides: Descriptive, Prescriptive, and Predictive Analytics
DATAVERSITY
 
Introduction on Data Science
Introduction on Data ScienceIntroduction on Data Science
Introduction on Data Science
Edureka!
 
03. Data Exploration.pptx
03. Data Exploration.pptx03. Data Exploration.pptx
03. Data Exploration.pptx
Sarojkumari55
 
Inferential statistics powerpoint
Inferential statistics powerpointInferential statistics powerpoint
Inferential statistics powerpoint
kellula
 
Introduction to Data Analytics
Introduction to Data AnalyticsIntroduction to Data Analytics
Introduction to Data Analytics
Dr. C.V. Suresh Babu
 
Data Visualization in Exploratory Data Analysis
Data Visualization in Exploratory Data AnalysisData Visualization in Exploratory Data Analysis
Data Visualization in Exploratory Data Analysis
Eva Durall
 
Introduction to Statistical Machine Learning
Introduction to Statistical Machine LearningIntroduction to Statistical Machine Learning
Introduction to Statistical Machine Learning
mahutte
 
Dimension Reduction: What? Why? and How?
Dimension Reduction: What? Why? and How?Dimension Reduction: What? Why? and How?
Dimension Reduction: What? Why? and How?
Kazi Toufiq Wadud
 
Data Science - Part V - Decision Trees & Random Forests
Data Science - Part V - Decision Trees & Random Forests Data Science - Part V - Decision Trees & Random Forests
Data Science - Part V - Decision Trees & Random Forests
Derek Kane
 
The Data Science Process
The Data Science ProcessThe Data Science Process
The Data Science Process
Vishal Patel
 
Exploratory data analysis
Exploratory data analysisExploratory data analysis
Exploratory data analysis
gokulprasath06
 
Linear models for data science
Linear models for data scienceLinear models for data science
Linear models for data science
Brad Klingenberg
 
Data Science - Part XII - Ridge Regression, LASSO, and Elastic Nets
Data Science - Part XII - Ridge Regression, LASSO, and Elastic NetsData Science - Part XII - Ridge Regression, LASSO, and Elastic Nets
Data Science - Part XII - Ridge Regression, LASSO, and Elastic Nets
Derek Kane
 
Exploratory data analysis
Exploratory data analysisExploratory data analysis
Exploratory data analysis
Gramener
 
Logistic regression in Machine Learning
Logistic regression in Machine LearningLogistic regression in Machine Learning
Logistic regression in Machine Learning
Kuppusamy P
 
Logistic regression
Logistic regressionLogistic regression
Logistic regression
saba khan
 
DI&A Slides: Descriptive, Prescriptive, and Predictive Analytics
DI&A Slides: Descriptive, Prescriptive, and Predictive AnalyticsDI&A Slides: Descriptive, Prescriptive, and Predictive Analytics
DI&A Slides: Descriptive, Prescriptive, and Predictive Analytics
DATAVERSITY
 
Introduction on Data Science
Introduction on Data ScienceIntroduction on Data Science
Introduction on Data Science
Edureka!
 
03. Data Exploration.pptx
03. Data Exploration.pptx03. Data Exploration.pptx
03. Data Exploration.pptx
Sarojkumari55
 
Inferential statistics powerpoint
Inferential statistics powerpointInferential statistics powerpoint
Inferential statistics powerpoint
kellula
 

Similar to Statistics For Data Science | Statistics Using R Programming Language | Hypothesis Testing | Edureka (20)

Application of time series analysis in financial economics
Application of time series analysis in financial economicsApplication of time series analysis in financial economics
Application of time series analysis in financial economics
Stats Statswork
 
Quantitative techniques for
Quantitative techniques forQuantitative techniques for
Quantitative techniques for
smumbahelp
 
Time Series Analysis
Time Series AnalysisTime Series Analysis
Time Series Analysis
Amanda Reed
 
bda-unit-5-bda-notes material big da.pdf
bda-unit-5-bda-notes material big da.pdfbda-unit-5-bda-notes material big da.pdf
bda-unit-5-bda-notes material big da.pdf
nandan543979
 
Lecture 1.ppt
Lecture 1.pptLecture 1.ppt
Lecture 1.ppt
Vinayak Vishwakarma
 
statistics.ppt
statistics.pptstatistics.ppt
statistics.ppt
AthenaYshelleYsit
 
Lecture-1.ppt
Lecture-1.pptLecture-1.ppt
Lecture-1.ppt
AthenaYshelleYsit
 
Lecture 1.ppt
Lecture 1.pptLecture 1.ppt
Lecture 1.ppt
HafizAbdulMannanUnkn
 
Driving Data to Cut Healthcare Costs
Driving Data to Cut Healthcare CostsDriving Data to Cut Healthcare Costs
Driving Data to Cut Healthcare Costs
Dan Wellisch
 
Churn in the Telecommunications Industry
Churn in the Telecommunications IndustryChurn in the Telecommunications Industry
Churn in the Telecommunications Industry
skewdlogix
 
What we do; predictive and prescriptive analytics
What we do; predictive and prescriptive analyticsWhat we do; predictive and prescriptive analytics
What we do; predictive and prescriptive analytics
Weibull AS
 
N ch01
N ch01N ch01
N ch01
kk3bii
 
Business analytics !!
Business analytics !!Business analytics !!
Business analytics !!
Abhay Mahalley
 
Business analytics
Business analytics Business analytics
Business analytics
Abhay Mahalley
 
Business analytics -Abhay Mahalley
Business analytics -Abhay MahalleyBusiness analytics -Abhay Mahalley
Business analytics -Abhay Mahalley
Abhay Mahalley
 
Statistical Data Analysis | Data Analysis | Statistics Services | Data Collec...
Statistical Data Analysis | Data Analysis | Statistics Services | Data Collec...Statistical Data Analysis | Data Analysis | Statistics Services | Data Collec...
Statistical Data Analysis | Data Analysis | Statistics Services | Data Collec...
Stats Statswork
 
Module1
Module1Module1
Module1
Prabhakar Bhattacharya
 
Meter Reading Benchmarking & Best Practices
Meter Reading Benchmarking & Best PracticesMeter Reading Benchmarking & Best Practices
Meter Reading Benchmarking & Best Practices
The Ascent Group,Inc.
 
Statistics Assignments 090427
Statistics Assignments 090427Statistics Assignments 090427
Statistics Assignments 090427
amykua
 
Alteryx q1'18 investor deck ir
Alteryx q1'18 investor deck   irAlteryx q1'18 investor deck   ir
Alteryx q1'18 investor deck ir
alteryxinvestor
 
Application of time series analysis in financial economics
Application of time series analysis in financial economicsApplication of time series analysis in financial economics
Application of time series analysis in financial economics
Stats Statswork
 
Quantitative techniques for
Quantitative techniques forQuantitative techniques for
Quantitative techniques for
smumbahelp
 
Time Series Analysis
Time Series AnalysisTime Series Analysis
Time Series Analysis
Amanda Reed
 
bda-unit-5-bda-notes material big da.pdf
bda-unit-5-bda-notes material big da.pdfbda-unit-5-bda-notes material big da.pdf
bda-unit-5-bda-notes material big da.pdf
nandan543979
 
Driving Data to Cut Healthcare Costs
Driving Data to Cut Healthcare CostsDriving Data to Cut Healthcare Costs
Driving Data to Cut Healthcare Costs
Dan Wellisch
 
Churn in the Telecommunications Industry
Churn in the Telecommunications IndustryChurn in the Telecommunications Industry
Churn in the Telecommunications Industry
skewdlogix
 
What we do; predictive and prescriptive analytics
What we do; predictive and prescriptive analyticsWhat we do; predictive and prescriptive analytics
What we do; predictive and prescriptive analytics
Weibull AS
 
N ch01
N ch01N ch01
N ch01
kk3bii
 
Business analytics -Abhay Mahalley
Business analytics -Abhay MahalleyBusiness analytics -Abhay Mahalley
Business analytics -Abhay Mahalley
Abhay Mahalley
 
Statistical Data Analysis | Data Analysis | Statistics Services | Data Collec...
Statistical Data Analysis | Data Analysis | Statistics Services | Data Collec...Statistical Data Analysis | Data Analysis | Statistics Services | Data Collec...
Statistical Data Analysis | Data Analysis | Statistics Services | Data Collec...
Stats Statswork
 
Meter Reading Benchmarking & Best Practices
Meter Reading Benchmarking & Best PracticesMeter Reading Benchmarking & Best Practices
Meter Reading Benchmarking & Best Practices
The Ascent Group,Inc.
 
Statistics Assignments 090427
Statistics Assignments 090427Statistics Assignments 090427
Statistics Assignments 090427
amykua
 
Alteryx q1'18 investor deck ir
Alteryx q1'18 investor deck   irAlteryx q1'18 investor deck   ir
Alteryx q1'18 investor deck ir
alteryxinvestor
 
Ad

More from Edureka! (20)

What to learn during the 21 days Lockdown | Edureka
What to learn during the 21 days Lockdown | EdurekaWhat to learn during the 21 days Lockdown | Edureka
What to learn during the 21 days Lockdown | Edureka
Edureka!
 
Top 10 Dying Programming Languages in 2020 | Edureka
Top 10 Dying Programming Languages in 2020 | EdurekaTop 10 Dying Programming Languages in 2020 | Edureka
Top 10 Dying Programming Languages in 2020 | Edureka
Edureka!
 
Top 5 Trending Business Intelligence Tools | Edureka
Top 5 Trending Business Intelligence Tools | EdurekaTop 5 Trending Business Intelligence Tools | Edureka
Top 5 Trending Business Intelligence Tools | Edureka
Edureka!
 
Tableau Tutorial for Data Science | Edureka
Tableau Tutorial for Data Science | EdurekaTableau Tutorial for Data Science | Edureka
Tableau Tutorial for Data Science | Edureka
Edureka!
 
Python Programming Tutorial | Edureka
Python Programming Tutorial | EdurekaPython Programming Tutorial | Edureka
Python Programming Tutorial | Edureka
Edureka!
 
Top 5 PMP Certifications | Edureka
Top 5 PMP Certifications | EdurekaTop 5 PMP Certifications | Edureka
Top 5 PMP Certifications | Edureka
Edureka!
 
Top Maven Interview Questions in 2020 | Edureka
Top Maven Interview Questions in 2020 | EdurekaTop Maven Interview Questions in 2020 | Edureka
Top Maven Interview Questions in 2020 | Edureka
Edureka!
 
Linux Mint Tutorial | Edureka
Linux Mint Tutorial | EdurekaLinux Mint Tutorial | Edureka
Linux Mint Tutorial | Edureka
Edureka!
 
How to Deploy Java Web App in AWS| Edureka
How to Deploy Java Web App in AWS| EdurekaHow to Deploy Java Web App in AWS| Edureka
How to Deploy Java Web App in AWS| Edureka
Edureka!
 
Importance of Digital Marketing | Edureka
Importance of Digital Marketing | EdurekaImportance of Digital Marketing | Edureka
Importance of Digital Marketing | Edureka
Edureka!
 
RPA in 2020 | Edureka
RPA in 2020 | EdurekaRPA in 2020 | Edureka
RPA in 2020 | Edureka
Edureka!
 
Email Notifications in Jenkins | Edureka
Email Notifications in Jenkins | EdurekaEmail Notifications in Jenkins | Edureka
Email Notifications in Jenkins | Edureka
Edureka!
 
EA Algorithm in Machine Learning | Edureka
EA Algorithm in Machine Learning | EdurekaEA Algorithm in Machine Learning | Edureka
EA Algorithm in Machine Learning | Edureka
Edureka!
 
Cognitive AI Tutorial | Edureka
Cognitive AI Tutorial | EdurekaCognitive AI Tutorial | Edureka
Cognitive AI Tutorial | Edureka
Edureka!
 
AWS Cloud Practitioner Tutorial | Edureka
AWS Cloud Practitioner Tutorial | EdurekaAWS Cloud Practitioner Tutorial | Edureka
AWS Cloud Practitioner Tutorial | Edureka
Edureka!
 
Blue Prism Top Interview Questions | Edureka
Blue Prism Top Interview Questions | EdurekaBlue Prism Top Interview Questions | Edureka
Blue Prism Top Interview Questions | Edureka
Edureka!
 
Big Data on AWS Tutorial | Edureka
Big Data on AWS Tutorial | Edureka Big Data on AWS Tutorial | Edureka
Big Data on AWS Tutorial | Edureka
Edureka!
 
A star algorithm | A* Algorithm in Artificial Intelligence | Edureka
A star algorithm | A* Algorithm in Artificial Intelligence | EdurekaA star algorithm | A* Algorithm in Artificial Intelligence | Edureka
A star algorithm | A* Algorithm in Artificial Intelligence | Edureka
Edureka!
 
Kubernetes Installation on Ubuntu | Edureka
Kubernetes Installation on Ubuntu | EdurekaKubernetes Installation on Ubuntu | Edureka
Kubernetes Installation on Ubuntu | Edureka
Edureka!
 
Introduction to DevOps | Edureka
Introduction to DevOps | EdurekaIntroduction to DevOps | Edureka
Introduction to DevOps | Edureka
Edureka!
 
What to learn during the 21 days Lockdown | Edureka
What to learn during the 21 days Lockdown | EdurekaWhat to learn during the 21 days Lockdown | Edureka
What to learn during the 21 days Lockdown | Edureka
Edureka!
 
Top 10 Dying Programming Languages in 2020 | Edureka
Top 10 Dying Programming Languages in 2020 | EdurekaTop 10 Dying Programming Languages in 2020 | Edureka
Top 10 Dying Programming Languages in 2020 | Edureka
Edureka!
 
Top 5 Trending Business Intelligence Tools | Edureka
Top 5 Trending Business Intelligence Tools | EdurekaTop 5 Trending Business Intelligence Tools | Edureka
Top 5 Trending Business Intelligence Tools | Edureka
Edureka!
 
Tableau Tutorial for Data Science | Edureka
Tableau Tutorial for Data Science | EdurekaTableau Tutorial for Data Science | Edureka
Tableau Tutorial for Data Science | Edureka
Edureka!
 
Python Programming Tutorial | Edureka
Python Programming Tutorial | EdurekaPython Programming Tutorial | Edureka
Python Programming Tutorial | Edureka
Edureka!
 
Top 5 PMP Certifications | Edureka
Top 5 PMP Certifications | EdurekaTop 5 PMP Certifications | Edureka
Top 5 PMP Certifications | Edureka
Edureka!
 
Top Maven Interview Questions in 2020 | Edureka
Top Maven Interview Questions in 2020 | EdurekaTop Maven Interview Questions in 2020 | Edureka
Top Maven Interview Questions in 2020 | Edureka
Edureka!
 
Linux Mint Tutorial | Edureka
Linux Mint Tutorial | EdurekaLinux Mint Tutorial | Edureka
Linux Mint Tutorial | Edureka
Edureka!
 
How to Deploy Java Web App in AWS| Edureka
How to Deploy Java Web App in AWS| EdurekaHow to Deploy Java Web App in AWS| Edureka
How to Deploy Java Web App in AWS| Edureka
Edureka!
 
Importance of Digital Marketing | Edureka
Importance of Digital Marketing | EdurekaImportance of Digital Marketing | Edureka
Importance of Digital Marketing | Edureka
Edureka!
 
RPA in 2020 | Edureka
RPA in 2020 | EdurekaRPA in 2020 | Edureka
RPA in 2020 | Edureka
Edureka!
 
Email Notifications in Jenkins | Edureka
Email Notifications in Jenkins | EdurekaEmail Notifications in Jenkins | Edureka
Email Notifications in Jenkins | Edureka
Edureka!
 
EA Algorithm in Machine Learning | Edureka
EA Algorithm in Machine Learning | EdurekaEA Algorithm in Machine Learning | Edureka
EA Algorithm in Machine Learning | Edureka
Edureka!
 
Cognitive AI Tutorial | Edureka
Cognitive AI Tutorial | EdurekaCognitive AI Tutorial | Edureka
Cognitive AI Tutorial | Edureka
Edureka!
 
AWS Cloud Practitioner Tutorial | Edureka
AWS Cloud Practitioner Tutorial | EdurekaAWS Cloud Practitioner Tutorial | Edureka
AWS Cloud Practitioner Tutorial | Edureka
Edureka!
 
Blue Prism Top Interview Questions | Edureka
Blue Prism Top Interview Questions | EdurekaBlue Prism Top Interview Questions | Edureka
Blue Prism Top Interview Questions | Edureka
Edureka!
 
Big Data on AWS Tutorial | Edureka
Big Data on AWS Tutorial | Edureka Big Data on AWS Tutorial | Edureka
Big Data on AWS Tutorial | Edureka
Edureka!
 
A star algorithm | A* Algorithm in Artificial Intelligence | Edureka
A star algorithm | A* Algorithm in Artificial Intelligence | EdurekaA star algorithm | A* Algorithm in Artificial Intelligence | Edureka
A star algorithm | A* Algorithm in Artificial Intelligence | Edureka
Edureka!
 
Kubernetes Installation on Ubuntu | Edureka
Kubernetes Installation on Ubuntu | EdurekaKubernetes Installation on Ubuntu | Edureka
Kubernetes Installation on Ubuntu | Edureka
Edureka!
 
Introduction to DevOps | Edureka
Introduction to DevOps | EdurekaIntroduction to DevOps | Edureka
Introduction to DevOps | Edureka
Edureka!
 
Ad

Recently uploaded (20)

Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
SOFTTECHHUB
 
Connect and Protect: Networks and Network Security
Connect and Protect: Networks and Network SecurityConnect and Protect: Networks and Network Security
Connect and Protect: Networks and Network Security
VICTOR MAESTRE RAMIREZ
 
Foundations of Cybersecurity - Google Certificate
Foundations of Cybersecurity - Google CertificateFoundations of Cybersecurity - Google Certificate
Foundations of Cybersecurity - Google Certificate
VICTOR MAESTRE RAMIREZ
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
AI You Can Trust: The Critical Role of Governance and Quality.pdf
AI You Can Trust: The Critical Role of Governance and Quality.pdfAI You Can Trust: The Critical Role of Governance and Quality.pdf
AI You Can Trust: The Critical Role of Governance and Quality.pdf
Precisely
 
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
Financial Services Technology Summit 2025
Financial Services Technology Summit 2025Financial Services Technology Summit 2025
Financial Services Technology Summit 2025
Ray Bugg
 
Play It Safe: Manage Security Risks - Google Certificate
Play It Safe: Manage Security Risks - Google CertificatePlay It Safe: Manage Security Risks - Google Certificate
Play It Safe: Manage Security Risks - Google Certificate
VICTOR MAESTRE RAMIREZ
 
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
James Anderson
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
Vaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without HallucinationsVaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without Hallucinations
john409870
 
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Markus Eisele
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...
BookNet Canada
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
AsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API DesignAsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API Design
leonid54
 
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Raffi Khatchadourian
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
SOFTTECHHUB
 
Connect and Protect: Networks and Network Security
Connect and Protect: Networks and Network SecurityConnect and Protect: Networks and Network Security
Connect and Protect: Networks and Network Security
VICTOR MAESTRE RAMIREZ
 
Foundations of Cybersecurity - Google Certificate
Foundations of Cybersecurity - Google CertificateFoundations of Cybersecurity - Google Certificate
Foundations of Cybersecurity - Google Certificate
VICTOR MAESTRE RAMIREZ
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
AI You Can Trust: The Critical Role of Governance and Quality.pdf
AI You Can Trust: The Critical Role of Governance and Quality.pdfAI You Can Trust: The Critical Role of Governance and Quality.pdf
AI You Can Trust: The Critical Role of Governance and Quality.pdf
Precisely
 
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
Financial Services Technology Summit 2025
Financial Services Technology Summit 2025Financial Services Technology Summit 2025
Financial Services Technology Summit 2025
Ray Bugg
 
Play It Safe: Manage Security Risks - Google Certificate
Play It Safe: Manage Security Risks - Google CertificatePlay It Safe: Manage Security Risks - Google Certificate
Play It Safe: Manage Security Risks - Google Certificate
VICTOR MAESTRE RAMIREZ
 
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
GDG Cloud Southlake #42: Suresh Mathew: Autonomous Resource Optimization: How...
James Anderson
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
Vaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without HallucinationsVaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without Hallucinations
john409870
 
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Markus Eisele
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...
BookNet Canada
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
AsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API DesignAsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API Design
leonid54
 
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Raffi Khatchadourian
 

Statistics For Data Science | Statistics Using R Programming Language | Hypothesis Testing | Edureka

  • 2. Introduction to Statistics Terminology Categories in Statistics Descriptive & Inferential Statistics Statistics in R Descriptive Statistics in R Inferential Statistics in R Agenda
  • 3. Introduction to Statistics Terminology Categories in Statistics Descriptive & Inferential Statistics Statistics in R Descriptive Statistics in R Inferential Statistics in R Agenda
  • 4. Introduction to Statistics Terminology Categories in Statistics Descriptive & Inferential Statistics Statistics in R Descriptive Statistics in R Inferential Statistics in R Agenda
  • 5. Introduction to Statistics Terminology Categories in Statistics Descriptive & Inferential Statistics Statistics in R Descriptive Statistics in R Inferential Statistics in R Agenda
  • 6. Introduction to Statistics Terminology Categories in Statistics Descriptive & Inferential Statistics Statistics in R Descriptive Statistics in R Inferential Statistics in R Agenda
  • 7. Introduction to Statistics Terminology Categories in Statistics Descriptive & Inferential Statistics Statistics in R Descriptive Statistics in R Inferential Statistics in R Agenda
  • 8. Introduction to Statistics Terminology Categories in Statistics Descriptive & Inferential Statistics Statistics in R Descriptive Statistics in R Inferential Statistics in R Agenda
  • 9. Introduction to Statistics Terminology Categories in Statistics Descriptive & Inferential Statistics Statistics in R Descriptive Statistics in R Inferential Statistics in R Agenda
  • 11. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Introduction to Statistics Statistics is a branch of mathematics dealing with data collection and organization, analysis, interpretation and presentation.
  • 12. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Introduction to Statistics Statistics is a branch of mathematics dealing with data collection and organization, analysis, interpretation and presentation.
  • 13. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Introduction to Statistics Statistics is a branch of mathematics dealing with data collection and organization, analysis, interpretation and presentation. Analyse Data Build a Model Infer Result
  • 14. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Introduction to Statistics Statistics is a branch of mathematics dealing with data collection and organization, analysis, interpretation and presentation. Statistics Stock Market Life Sciences Weather Retail Insurance Education
  • 16. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Basic Terminology There are a few statistical terms one should be aware of while dealing with statistics. Population ParameterSample Variable
  • 17. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Basic Terminology There are a few statistical terms one should be aware of while dealing with statistics. Population ParameterSample Variable Population is the set of sources from which data has to be collected.
  • 18. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Basic Terminology There are a few statistical terms one should be aware of while dealing with statistics. Population ParameterSample Variable A Sample is a subset of the Population.
  • 19. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Basic Terminology There are a few statistical terms one should be aware of while dealing with statistics. Population ParameterSample Variable A variable is any characteristics, number, or quantity that can be measured or counted. A variable may also be called a data item. Gender Age Region Height Weight Income Blood Group Ethnicity Degree Time Language
  • 20. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Basic Terminology There are a few statistical terms one should be aware of while dealing with statistics. Population ParameterSample Variable Also known as a statistical model, A statistical Parameter or population parameter is a quantity that indexes a family of probability distributions. µ ∑ х
  • 21. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Types of Analysis An analysis can be done in one of two ways. Analysis Quantitative Qualitative
  • 22. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Types of Analysis An analysis can be done in one of two ways. Also known as Statistical Analysis, it is the science of collecting & interpreting objects with numbers. Also known as Non-statistical Analysis, it mostly deals with generic data using text, media, etc Analysis Quantitative Qualitative
  • 24. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Inferential statistics makes inferences and predictions about a population based on a sample of data taken from the population in question. Descriptive statistics uses the data to provide descriptions of the population, either through numerical calculations or graphs or tables. Categories in Statistics There are two major categories in Statistics. Descriptive InferentialInferential
  • 25. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Descriptive Statistics This method, is mainly focused upon the main characteristics of data. It provides graphical summary of the data. Characteristics of Data Descriptive Statistics
  • 26. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Descriptive Statistics Maximum Minimum Average This method, is mainly focused upon the main characteristics of data. It provides graphical summary of the data.
  • 27. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Inferential Statistics This method, generalizes a large dataset and applies probability to draw a conclusion. It allows us to infer data parameters based on a statistical model using a sample data. Statistical Model Start Process Step Decision Answer Choice I Choice II Inferential Statistics
  • 28. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Inferential Statistics Tall Short Average This method, generalizes a large dataset and applies probability to draw a conclusion. It allows us to infer data parameters based on a statistical model using a sample data.
  • 29. Descriptive Statistics – Statistical Measures
  • 30. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Descriptive Statistics – Use Case Here is a sample dataset of cars containing the variables: Cars, Mileage per Gallon(mpg), Cylinder Type (cyl), Displacement (disp), Horse Power(hp) & Real Axle Ratio(drat). Using descriptive Analysis, you can analyse each of the variables in the dataset for mean, standard deviation, minimum and maximum. Cars mpg cyl disp hp drat A 21 6 160 110 3.9 B 21 6 160 110 3.9 C 22.8 4 108 93 3.85 D 21.3 6 108 96 3 E 23 4 150 90 4 F 23 6 108 110 3.9 G 23 4 160 110 3.9 H 23 6 160 110 3.9
  • 31. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Measures of the Centre There are a few statistical terms one should be aware of while dealing with statistics. Mean Median Mode
  • 32. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Descriptive Statistics – Use Case If we want to find out the average horsepower of the cars among the population of cars, we will check and calculate the average of all values. In this case, Cars mpg cyl disp hp drat A 21 6 160 110 3.9 B 21 6 160 110 3.9 C 22.8 4 108 93 3.85 D 21.3 6 108 96 3 E 23 4 150 90 4 F 23 6 108 110 3.9 G 23 4 160 110 3.9 H 23 6 160 110 3.9 110 + 110 + 93 + 96 + 90 + 110 + 110 + 110 8 = 103.625
  • 33. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Measures of the Centre There are a few statistical terms one should be aware of while dealing with statistics. Mean Median Mode Measure of average of all the values in a sample is called Mean.
  • 34. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Descriptive Statistics – Use Case If we want to find out the centre value of mpg among the population of cars, we will arrange the mpg values in ascending order to choose the middle value. In this case, 21,21,21.3,22.8,23,23,23,23 But in case of even entries, we take average of the two middle values. In this case, 22.8+23 2 = 22.9 Cars mpg cyl disp hp drat A 21 6 160 110 3.9 B 21 6 160 110 3.9 C 22.8 4 108 93 3.85 D 21.3 6 108 96 3 E 23 4 150 90 4 F 23 6 108 110 3.9 G 23 4 160 110 3.9 H 23 6 160 110 3.9
  • 35. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Measures of the Centre There are a few statistical terms one should be aware of while dealing with statistics. Mean Median Mode Measure of the central value of the sample set is called Median.
  • 36. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Descriptive Statistics – Use Case If we want to find out the most common type of cylinder among the population of cars, we will check the value which is repeated most number of times. 4 6 4 6 Cars mpg cyl disp hp drat A 21 6 160 110 3.9 B 21 6 160 110 3.9 C 22.8 4 108 93 3.85 D 21.3 6 108 96 3 E 23 4 150 90 4 F 23 6 108 110 3.9 G 23 4 160 110 3.9 H 23 6 160 110 3.9
  • 37. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Measures of the Centre There are a few statistical terms one should be aware of while dealing with statistics. Mean Median Mode The value most recurrent in the sample set is known as Mode.
  • 38. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Measures of the Spread There are a few statistical terms one should be aware of while dealing with statistics. Range Standard DeviationInter Quartile Range Variance
  • 39. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Measures of Spread There are a few statistical terms one should be aware of while dealing with statistics. Range Standard DeviationInter Quartile Range Variance Range is the given measure of how spread apart the values in a dataset are. Range = Max(𝑥𝑖) - Min(𝑥𝑖)
  • 40. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Measures of Spread There are a few statistical terms one should be aware of while dealing with statistics. Range Standard DeviationInter Quartile Range Variance Inter Quartile Range(IQR) is the measure of variability, based on dividing a dataset into quartiles. 1 2 3 4 5 6 7 8
  • 41. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Measures of Spread There are a few statistical terms one should be aware of while dealing with statistics. Range Standard DeviationInter Quartile Range Variance Quartile 1 2 3 4 5 6 7 8 Q1 Q2 Q3
  • 42. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Measures of Spread There are a few statistical terms one should be aware of while dealing with statistics. Range Standard DeviationInter Quartile Range Variance Quartile 1 2 3 4 5 6 7 8 Q1 Q2 Q3 Q1= 2+3 2 =2.5
  • 43. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Measures of Spread There are a few statistical terms one should be aware of while dealing with statistics. Range Standard DeviationInter Quartile Range Variance Quartile 1 2 3 4 5 6 7 8 Q1 Q2 Q3 Q2= 4+5 2 =4.5
  • 44. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Measures of Spread There are a few statistical terms one should be aware of while dealing with statistics. Range Standard DeviationInter Quartile Range Variance Quartile 1 2 3 4 5 6 7 8 Q1 Q2 Q3 Q3= 6+7 2 =6.5
  • 45. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Measures of Spread There are a few statistical terms one should be aware of while dealing with statistics. Range Standard DeviationInter Quartile Range Variance Inter Quartile Range 1 2 3 4 5 6 7 8 Q1 Q3
  • 46. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Measures of Spread There are a few statistical terms one should be aware of while dealing with statistics. Range Standard DeviationInter Quartile Range Variance Variance describes how much a random variable differs from its expected value. It entails computing squares of deviations.
  • 47. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Measures of Spread There are a few statistical terms one should be aware of while dealing with statistics. Range Standard DeviationInter Quartile Range Variance ❖ Deviation is the difference between each element from the mean. Deviation = (𝑥𝑖-µ)
  • 48. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Measures of Spread There are a few statistical terms one should be aware of while dealing with statistics. Range Standard DeviationInter Quartile Range Variance ❖ Population Variance is the average of squared deviations. σ² = ෍ 𝑖=1 𝑁 = (𝑥𝑖−𝜇)² 1 𝑁
  • 49. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Measures of Spread There are a few statistical terms one should be aware of while dealing with statistics. Range Standard DeviationInter Quartile Range Variance ❖ Sample Variance is the average of squared differences from the mean. s² = ෍ 𝑖=1 𝑁 = (𝑥𝑖− ҧ𝑥)² 1 (𝑛 − 1)
  • 50. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Measures of Spread There are a few statistical terms one should be aware of while dealing with statistics. Range Standard DeviationInter Quartile Range Variance Standard Deviation is the measure of the dispersion of a set of data from its mean. σ = ෍ 𝑖=1 𝑁 = (𝑥𝑖−𝜇)² 1 𝑁
  • 51. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Standard Deviation– Use Case Ross has 20 Dinosaur figures. They have the numbers 9, 2, 5, 4, 12, 7, 8, 11, 9, 3, 7, 4, 12, 5, 4, 10, 9, 6, 9, 4. Work out the Standard Deviation. Find out the mean for your sample set. STEP 1 The Mean is: 9+2+5+4+12+7+8+11+9+3+7+4+12+5+4+10+9+6+9+4 20 ⸫µ=7
  • 52. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Standard Deviation– Use Case Ross has 20 Dinosaur figures. They have the numbers 9, 2, 5, 4, 12, 7, 8, 11, 9, 3, 7, 4, 12, 5, 4, 10, 9, 6, 9, 4. Work out the Standard Deviation. Then for each number, subtract the Mean and square the result. STEP 2 (𝑥𝑖−𝜇)² (9-7)²= 2²=4 (2-7)²= (-5)²=25 (5-7)²= (-2)²=4 And so on… ⸫ We get the following results: 4, 25, 4, 9, 25, 0, 1, 16, 4, 16, 0, 9, 25, 4, 9, 9, 4, 1, 4, 9
  • 53. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Standard Deviation– Use Case Ross has 20 Dinosaur figures. They have the numbers 9, 2, 5, 4, 12, 7, 8, 11, 9, 3, 7, 4, 12, 5, 4, 10, 9, 6, 9, 4. Work out the Standard Deviation. Then work out the mean of those squared differences. STEP 3 ෍ 𝑖=1 𝑁 = (𝑥𝑖−𝜇)² 1 𝑁 4+25+4+9+25+0+1+16+4+16+0+9+25+4+9+9+4+1+4+9 20 ⸫ σ² = 8.9
  • 54. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Standard Deviation– Use Case Ross has 20 Dinosaur figures. They have the numbers 9, 2, 5, 4, 12, 7, 8, 11, 9, 3, 7, 4, 12, 5, 4, 10, 9, 6, 9, 4. Work out the Standard Deviation. Take square root of σ². STEP 4 ⸫ σ = 2.983 ෍ 𝑖=1 𝑁 = (𝑥𝑖−𝜇)² 1 𝑁 σ =
  • 56. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Statistics in R ❖ R is open-source and freely available. ❖ R is cross-platform compatible. ❖ R is a powerful scripting language. ❖ R is highly flexible and evolved. Reasons for moving to R
  • 57. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Statistics in R ❖ R is open-source and freely available. ❖ R is cross-platform compatible. ❖ R is a powerful scripting language. ❖ R is highly flexible and evolved. Reasons for moving to R
  • 58. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Statistics in R ❖ R is open-source and freely available. ❖ R is cross-platform compatible. ❖ R is a powerful scripting language. ❖ R is highly flexible and evolved. Reasons for moving to R
  • 59. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Statistics in R ❖ R is open-source and freely available. ❖ R is cross-platform compatible. ❖ R is a powerful scripting language. ❖ R is highly flexible and evolved. Reasons for moving to R
  • 61. Inferential Statistics – Hypothesis Testing
  • 62. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Hypothesis Testing Statisticians use hypothesis testing to formally check whether the hypothesis is accepted or rejected. Hypothesis testing is conducted in the following manner: ❖ State the Hypotheses – This stage involves stating the null and alternative hypotheses. ❖ Formulate an Analysis Plan – This stage involves the construction of an analysis plan. ❖ Analyse Sample Data – This stage involves the calculation and interpretation of the test statistic as described in the analysis plan. ❖ Interpret Results – This stage involves the application of the decision rule described in the analysis plan.
  • 63. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Hypothesis Testing Nick John Bob Harry Assume the event is free of bias. So, what is the probability of John not cheating?
  • 64. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Hypothesis Testing Nick John Bob Harry P(John not picked for a day) = 3 4 P(John not picked for 3 days) = 3 4 × 3 4 × 3 4 = 0.42 (approx) P(John not picked for 12 days) = ( 3 4 ) 12 = 0.032 < 𝟎. 𝟎𝟓
  • 65. Copyright © 2018, edureka and/or its affiliates. All rights reserved.www.edureka.co/masters-program/business-intelligence-certification Hypothesis Testing Nick John Bob Harry Null Hypothesis (𝑯 𝟎) : Result is no different from assumption. Alternate Hypothesis (𝑯 𝒂) : Result disproves the assumption. Probability of Event < 𝟎. 𝟎𝟓 (5%)